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ABSTRACT

NEUTRAL CURRENT ELASTIC SCATTERING

AND THE STRANGE SPIN STRUCTURE OF THE PROTON

BY

KATHERINE WOODRUFF

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2018

Dr. Vassili Papavassiliou, Chair

Neutrinos can be used as a unique and informative probe of the structure

within nucleons. This thesis presents the tools and methodology for studying

the strange quark spin in the nucleon through neutral current elastic neutrino-

proton scattering in the MicroBooNE experiment located at the Fermi National

Accelerator Lab.

An automated boosted decision tree based proton identification algorithm is

used to select proton in liquid argon TPC data with a 70% efficiency. After a

set of protons are selected, a logistic regression model is used to select neutral
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current elastic proton interactions in MicroBooNE. Neutral current elastic proton

interactions are selected with an 11% efficiency and 30% purity.

The number of selected events measured in MicroBooNE data as a function

of Q2 is compared directly to the number of selected events in MicroBooNE sim-

ulation. An event reweighting scheme is used to vary the expected number of

eventsin MicroBooNE simulation based on the values of the physics parameters of

interest. The likelihood for any given value of the physical parameters can then

be easily calculated and the probability distributions of the physics parameters

can be sampled using Markov Chain Monte Carlo.

Future improvements to the detector physics models in MicroBooNE are re-

quired for a precise determination of the strange quark spin structure in the pro-

ton. With the current level of uncertainty on the detector physics models, we are

only able to constrain the net strange quark spin, ∆s to the range−1.8 < ∆s < 3.8

with 95% confidence.

ix



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Spin Structure of Nucleons . . . . . . . . . . . . . . . . . . . 4

1.2.1 Spin Structure Functions . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Ellis-Jaffe Sum Rule . . . . . . . . . . . . . . . . . . . 6

1.2.3 Experimental Tests of the Ellis-Jaffe Sum Rule . . . . . . . 7

1.3 Neutrino Measurements of the Strange Spin Structure . . . . . . . 10

1.3.1 The BNL E734 Experiment . . . . . . . . . . . . . . . . . 11

1.3.2 The MiniBooNE Experiment . . . . . . . . . . . . . . . . . 15

2 Neutrino-Nucleon interactions . . . . . . . . . . . . . . . . . . . . 19

2.1 Two-particle interactions . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Electroweak interactions . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 The charged and neutral currents . . . . . . . . . . . . . . 22

2.2.2 V−A structure . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Electroweak Scattering Matrix Elements . . . . . . . . . . . . . . 24

2.3.1 Nucleon matrix elements . . . . . . . . . . . . . . . . . . . 24

x



2.3.2 Electromagnetic Scattering . . . . . . . . . . . . . . . . . . 25

2.3.3 Vector current . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Axial current . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Strangeness in the nucleon . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Strange currents . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Strange nucleon matrix elements . . . . . . . . . . . . . . 31

2.5 Neutrino-proton neutral current elastic cross section . . . . . . . . 32

2.6 Determination of the Nucleon Form Factors . . . . . . . . . . . . 34

2.6.1 Model-Independent Form Factor Parameterization . . . . . 35

2.6.2 Fits of z Expansion Form Factors to Data . . . . . . . . . 36

2.6.3 z Expansion Fit to the Neutral Current Axial Form Factor 38

3 The MicroBooNE experiment . . . . . . . . . . . . . . . . . . . . 40

3.1 MicroBooNE Physics Goals . . . . . . . . . . . . . . . . . . . . . 40

3.2 The Booster Neutrino Beam . . . . . . . . . . . . . . . . . . . . . 42

3.3 MicroBooNE LArTPC . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 MicroBooNE light collection system and event trigger . . . . . . . 50

4 Simulation and reconstruction . . . . . . . . . . . . . . . . . . . . 53

4.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Cross section model . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Event generation . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Detector simulation . . . . . . . . . . . . . . . . . . . . . . 58

xi



4.2 Event reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Flash reconstruction . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 TPC event reconstruction . . . . . . . . . . . . . . . . . . 61

5 Particle Identification and Event Selection . . . . . . . . . . . . . 66

5.1 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Reconstructed track features . . . . . . . . . . . . . . . . . 67

5.1.2 Boosted decision trees . . . . . . . . . . . . . . . . . . . . 70

5.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.4 Performance on a Test Set . . . . . . . . . . . . . . . . . . 74

5.1.5 Performance on a Neutrino Data Subset . . . . . . . . . . 80

5.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Optical Pre-selection . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 NC Elastic Pre-selection . . . . . . . . . . . . . . . . . . . 93

5.2.3 Selection Variables . . . . . . . . . . . . . . . . . . . . . . 97

5.2.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 104

5.2.5 Comparison of Event Selection on Neutrino Beam Data to

Expectation from Simulation and Off-Beam Data . . . . . 108

5.3 Remaining Backgrounds . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Beam Induced Dirt Background . . . . . . . . . . . . . . . 117

5.3.2 Beam Induced TPC and Cryostat Background . . . . . . . 123

5.3.3 Cosmic Background . . . . . . . . . . . . . . . . . . . . . . 131

xii



5.4 Estimation of Systematic Uncertainty . . . . . . . . . . . . . . . . 133

5.4.1 Neutrino Beam Flux Uncertainty . . . . . . . . . . . . . . 134

5.4.2 Detector Physics Uncertainty . . . . . . . . . . . . . . . . 137

5.4.3 Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . 146

6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1 Comparison of Data to Simulation . . . . . . . . . . . . . . . . . . 154

6.1.1 Event Reweighting . . . . . . . . . . . . . . . . . . . . . . 155

6.1.2 Likelihood calculation . . . . . . . . . . . . . . . . . . . . 158

6.2 Strange axial form factor parameter estimation . . . . . . . . . . 162

6.2.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . 162

6.2.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . 163

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.1 MCMC Sampling without Systematic Nuisance Parameters 167

6.3.2 MCMC Sampling with Systematic Nuisance Parameters . 171

6.3.3 MCMC Test Metrics . . . . . . . . . . . . . . . . . . . . . 179

6.3.4 Distributions of ∆s and M s
A . . . . . . . . . . . . . . . . . 182

6.4 Conclusions and Prospects for a Future MicroBooNE ∆s Measure-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xiii



LIST OF TABLES

1 Breakdown by simulated particle type reconstructed tracks in the

gradient-boosted decision tree training set. . . . . . . . . . . . . 72

2 Number of remaining events in 5× 1019 POT data set after each of

the NC elastic pre-selection cuts. . . . . . . . . . . . . . . . . . . 94

3 Efficiency and purity of simulated NC elastic proton events after

each of the NC elastic pre-selection cuts. . . . . . . . . . . . . . . 96

4 Contributions to the systematic uncertainty on the number of sim-

ulated events passing the NC elastic proton selection. . . . . . . 153

xiv



LIST OF FIGURES

1 The standard model of particle physics taken from [1]. . . . . . . 3

2 The integral of the g1(x) spin structure function measured by the

EMC experiment [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Schematic of the BNL E734 detector [3]. . . . . . . . . . . . . . . 12

4 Results from the Brookhaven E734 measurement of the neutral

current elastic cross section. . . . . . . . . . . . . . . . . . . . . . 13

5 Schematic of the MiniBooNE detector [4]. . . . . . . . . . . . . . 16

6 Ratio of the neutrino-proton NC elastic cross section to the neutrino-

nucleon NC elastic cross section measured in MiniBooNE [5]. . . . 17

7 Neutral current elastic cross section results from Ref. [6] . . . . . 18

8 Feynman diagram of two-fermion scattering. . . . . . . . . . . . . 20

9 Feynman diagrams of elastic neutrino-nucleon scattering. . . . . . 25

10 Feynman diagram of neutrino-proton neutral current elastic scat-

tering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 Observed low energy electron-like excess in MiniBooNE. . . . . . 41

12 Predicted neutrino beam flux at MicroBooNE. . . . . . . . . . . . 44

13 Top view of all simulated neutrino interaction positions. . . . . . . 45

14 Side view of all simulated neutrino interaction positions. . . . . . 46

xv



15 Representation of the operational principle of the MicroBooNE

LArTPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

16 Expected number of muon neutrino interactions in the MicroBooNE

TPC based on Monte Carlo simulation as a function of POT. . . . 50

17 Fractional rate of flashes surrounding BNB spill window. . . . . . 51

18 Rendering of the simulated MicroBooNE geometry. . . . . . . . . 59

19 Graphical example of a decision tree. . . . . . . . . . . . . . . . . 71

20 Area-normalized histograms of decision tree proton identification

scores for simulated protons and other simulated proton tracks. . 75

21 Area-normalized histogram of decision tree proton identification

scores for simulated proton tracks from NC elastic proton interactions. 76

22 Heatmap showing the fraction of each class that is made up of a

given particle type. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

23 The efficiency of simulated neutrino-induced proton tracks correctly

classified as protons as a function of true proton kinetic energy. . 78

24 The efficiency of simulated neutrino-induced proton tracks correctly

classified as protons as a function of true proton angle. . . . . . . 79

25 Two-dimensional efficiency for true proton cos(θp) versus true pro-

ton kinetic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvi



26 Comparison of the decision tree proton scores between a subset

of MicroBooNE neutrino data and a combination of MicroBooNE

neutrino simulation and off-beam data. . . . . . . . . . . . . . . . 83

27 Breakdown of the different particle track types in neutrino data

and simulation as a function of the number of hits on the collection

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

28 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track straightness. . . . . . . . 85

29 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track length. . . . . . . . . . . 86

30 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track start dE/dx. . . . . . . . 86

31 Breakdown of the different particle track types in neutrino data

and simulation as a function of the end to start dE/dx ratio. . . . 87

32 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track truncated total dE/dx. . 87

33 Breakdown of the different particle track types in neutrino data

and simulation as a function of the truncated average dE/dx. . . 88

34 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track starting y position. . . . 88

xvii



35 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track ending y position. . . . . 89

36 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track starting z position. . . . 89

37 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track ending z position. . . . . 90

38 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track cos(θ) angle. . . . . . . . 90

39 Breakdown of the different particle track types in neutrino data

and simulation as a function of the track φ angle. . . . . . . . . . 91

40 Efficiency of optical pre-selection on simulated NC elastic proton

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

41 Efficiency of simulated NC elastic proton events as a function of

true Q2 after the pre-selection cuts. . . . . . . . . . . . . . . . . . 97

42 Reconstructed track length of the longest proton candidate track

in the events after all pre-selection cuts. . . . . . . . . . . . . . . 98

43 Decision tree proton score after the pre-selection cuts. . . . . . . . 100

44 Distance to the next closest track after the pre-selection cuts. . . 100

45 Distance to the beam flash in z after the pre-selection cuts. . . . . 101

46 Distance to the beam flash in y after the pre-selection cuts. . . . . 101

xviii



47 Whether or not the track is forward going after the pre-selection

cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

48 Distance between muon track and flash after the pre-selection cuts. 102

49 Distance between pion track and flash after the pre-selection cuts. 103

50 Logistic regression NC elastic events selection score. . . . . . . . . 106

51 Efficiency and purity of the NC elastic proton event selection given

several different cut values on the logistic regression score. . . . . 107

52 Efficiency of the NC elastic proton event selection on simulated NC

elastic proton events as a function of true Q2. . . . . . . . . . . . 108

53 Selected NC elastic proton events as a function of reconstructed Q2
p. 111

54 Selected NC elastic proton events as a function of reconstructed

cos(θp). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

55 Selected NC elastic proton events as a function of reconstructed φp. 113

56 Selected NC elastic proton events as a function of reconstructed x

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

57 Selected NC elastic proton events as a function of reconstructed y

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

58 Selected NC elastic proton events as a function of reconstructed z

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

59 Remaining background dirt events after NC elastic proton event

selection as a function of Q2. . . . . . . . . . . . . . . . . . . . . . 118

xix



60 Comparison of the cosmic proton flux predictions from three differ-

ent generator models in MicroBooNE [7]. . . . . . . . . . . . . . . 119

61 Position of simulated neutrino interactions which produce a neutron

that enters and interacts in the MicroBooNE TPC. . . . . . . . . 121

62 Comparison between neutrino beam data and the expectation from

simulation and off-beam data of the z distribution of reconstructed

flashes without the contribution from neutrino interactions in the

dirt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

63 Distribution of the z position of reconstructed flashes in MicroBooNE.123

64 Comparison between neutrino beam data and the expectation from

simulation and off-beam data of the z distribution of reconstructed

flashes with the contribution from neutrino interactions in the dirt. 124

65 Remaining background cryostat events after NC elastic proton event

selection as a function of Q2. . . . . . . . . . . . . . . . . . . . . . 126

66 Remaining CC TPC events background after NC elastic proton

event selection as a function of Q2. . . . . . . . . . . . . . . . . . 127

67 Remaining NC TPC background events after NC elastic proton

event selection as a function of Q2. . . . . . . . . . . . . . . . . . 128

68 Remaining background NC TPC background events broken down

by interaction type after NC elastic proton event selection as a

function of Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xx



69 Comparison of the number of CC MEC events in MicroBooNE

simulation between the two models as a function of true Q2. . . . 131

70 Corrected number of CC MEC events as a function of true Q2 with

one standard deviation systematic uncertainty bars. . . . . . . . . 132

71 Remaining in-time cosmic background events after NC elastic pro-

ton event selection as a function of Q2. . . . . . . . . . . . . . . . 133

72 Neutrino flux prediction with systematic uncertainty at MicroBooNE [8].134

73 The uncertainty on the number of simulated events due to the neu-

trino beam flux uncertainty as a function of Eν . . . . . . . . . . . 135

74 Two-dimensional histogram showing the relationship between true

Q2 and true Eν in simulated NC elastic neutrino-proton interactions

in MicroBooNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

75 Fractional uncertainty on the number of simulated NC elastic neutrino-

proton interactions due to the beam flux uncertainty as a function

of Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

76 The uncertainty on the number of simulated events due to the neu-

trino beam flux uncertainty as a function of Q2. . . . . . . . . . . 138

77 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the uncertainty

on the neutrino beam flux. . . . . . . . . . . . . . . . . . . . . . . 139

xxi



78 Comparison of an event display of the second induction plane using

the default detector physics parameters and using the estimated

dynamic induced charge on the wires. . . . . . . . . . . . . . . . . 140

79 Change in the number of simulated events passing the NC elas-

tic proton selection as a function of reconstructed Q2 between the

default detector physics and with the estimated dynamic induced

charge on the wires. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

80 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the dynamic in-

duced charge on the wires. . . . . . . . . . . . . . . . . . . . . . . 142

81 Change in the number of simulated events passing the NC elas-

tic proton selection as a function of reconstructed Q2 between the

default detector physics and with the space charge correction. . . 143

82 Change in the number of simulated events passing the NC elastic

proton selection as a function of reconstructed Q2 when the single

PE background rate is varied. . . . . . . . . . . . . . . . . . . . . 144

83 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the single PE

background rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xxii



84 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the uncertainty

on the MEC model. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

85 The systematic uncertainty due to Pauli blocking on simulated

CCQE events as a function of true Q2 using the GENIE Reweight-

ing tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

86 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to Pauli blocking. 149

87 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the nucleon rescat-

tering probability in the argon nucleus. . . . . . . . . . . . . . . . 150

88 The change in the number of NC elastic events with different nu-

clear momentum and FSI models as a function of reconstructed

Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

89 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty due to the number of

dirt interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

90 The NC elastic proton selection on simulation and off-beam data

with statistical and systematic uncertainty. . . . . . . . . . . . . . 154

91 Calculated likelihood values at discrete as0, as1, and as2 with zero

systematic uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . 161

xxiii



92 Two-dimensional views of the multivariate normal proposal distri-

bution of the strange axial form factor parameters. . . . . . . . . 169

93 MCMC chains of the strange axial form factor parameters after

50,000 steps with the systematic parameters held to zero. . . . . . 170

94 Two-dimensional views of the 50,000 MCMC samples of the poste-

rior distributions of the strange axial form factor parameters with

the systematic parameters held to zero. . . . . . . . . . . . . . . . 171

95 MCMC chains of the strange axial form factor parameters after

200,000 steps with the systematic parameters included. . . . . . . 175

96 Two-dimensional views of the 200,000 MCMC samples of the pos-

terior distributions of the strange axial form factor parameters with

the systematic parameters included. . . . . . . . . . . . . . . . . . 176

97 Two-dimension histogram of the MCMC samples of the posterior

distribution for the as0 and as1 parameters. . . . . . . . . . . . . . 177

98 One-dimensional histograms of the strange axial form factor pa-

rameter samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

99 The posterior predictive distribution of the number of selected

events compared to Run I neutrino-beam data as a function of

reconstructed Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

100 Two-dimensional histogram of the MCMC samples transformed to

∆s and M s
A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xxiv



101 One-dimensional histogram of the MCMC samples transformed to

∆s with 68% and 95% credible intervals. . . . . . . . . . . . . . . 184

102 One-dimensional histogram of the MCMC samples transformed to

M s
A with 68% and 95% credible intervals. . . . . . . . . . . . . . . 185

xxv



1 Introduction

Ten years after the discovery of the proton by Rutherford in 1920 [9] Pauli

postulated “a particle that cannot be detected”, which later became known as the

neutrino. The neutrino was eventually detected by Reines and Cowan in 1956 [10].

Our understanding of both the proton and the neutrino has radically changed

since they were discovered. In the 1960s Gell-Mann and Zweig independently

proposed that the proton had an internal structure composed of a new particle

called quarks [11, 12, 13]. This quark substructure was first detected in 1968 at

the Stanford Linear Accelerator Lab [14]. Also in 1968, Davis built a detector

to measure neutrinos coming from the sun and detected fewer than predicted

by theory [15, 16]. This was later confirmed in 1998 by the Super-Kamiokande

collaboration [17] to be due to the fact that neutrinos are able to oscillate into

other flavors, violating lepton number conservation.

Two decades later in 1987, the European Muon Collaboration (EMC) discov-

ered that the spin of the quarks in the proton only makes up a small percentage of

the total spin of the proton [18], referred to as the proton spin puzzle. In addition

to the total quark spin contribution being smaller than expected, the EMC also

saw evidence that the net spin contribution from the strange quark-antiquark pairs

in the proton’s quark-gluon sea was not zero as expected but actually negative[2].
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In 1997 the Liquid Scintillator Neutrino Detector (LSND) collaboration an-

nounced that it had observed an anomaly in the neutrino oscillation spectrum [19]

which might suggest a fourth generation of neutrinos that do not interact via the

standard model, called sterile neutrinos. This announcement led to the Mini-

BooNE experiment which was unable to verify the LSND anomaly, but observed

a new anomaly at low neutrino energy [20, 21], known as the low energy excess,

which may also suggest sterile neutrinos.

The MicroBooNE experiment [22] was designed to be able to investigate the

MiniBooNE low energy excess. Interestingly, the design parameters required for

MicroBooNE to shed light on the MiniBooNE excess happen to make it an ideal

experiment for studying the mystery of strange quark spin structure in the proton

that was found by the EMC.

1.1 The Standard Model

The standard model of particle physics, illustrated in Fig. 1, classifies all of the

known elementary particles and describes the fundamental forces between them.

The elementary particles in the standard model are divided into the particles

with half-integer spin, called fermions, that make up matter and the particles

with whole-integer spin, called bosons, that carry the forces between particles.

The fermions are further divided based on what type of forces they interact

with. The six quarks (and six antiquarks) can interact via all three standard

2



Figure 1: The standard model of particle physics taken from [1].

model forces. The quarks compose protons and neutrons and are the only fermions

that can interact via the strong force. The six leptons (and six anti-leptons) can

all interact via the weak force, and the charged leptons (electrons, muons, and

tau leptons) can interact via the electromagnetic force, but the neutral neutrinos

cannot. The quarks and leptons are also divided into three “generations”, also

illustrated in Fig. 1. Almost all matter is composed of the first generation fermions

which include electrons and up and down quarks.

The bosons consist of the gluon, which carries the strong force, the photon,

which carries the electromagnetic force, the W± and Z0 bosons, which carry the

weak force, and the Higgs boson, which gives the particles their mass. As their
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names suggest, the strong force is much stronger than the other forces, the weak

force is the weakest force in the standard model, and the electromagnetic force is

in between.

Neutrinos are so difficult to detect because they can only interact via the

weakest force. The probability of a given neutrino interacting with any other

particle is very low. This is also what allows us to use neutrinos to probe the

internal quark and gluon structure of protons and neutrons.

1.2 The Spin Structure of Nucleons

Protons and neutrons, called nucleons, are composed of three up and down quarks

and the gluons that bind the quarks together. These gluons carry enough energy

to split into short-lived quark-antiquark pairs inside the nucleon making up a

quark-gluon sea. The sea is made up of gluons and up, down, and strange quarks

and antiquarks. The momentum, electromagnetic, and spin structure of each

component of the quark-gluon sea is an active area of research.

1.2.1 Spin Structure Functions

In inclusive lepton-nucleon deep inelastic scattering (DIS), it is useful to param-

eterize the scattering cross section in terms of nucleon structure functions F1(x),

F2(x), g1(x), and g2(x). In the QCD parton model [23], x is the fraction of the

nucleon’s momentum carried by the quarks, and g1 and g2, the spin structure

4



functions, parameterize the polarized DIS cross section [24].

The g1 spin structure function can be written as a combination of the spin

contribution from each of the quark flavors [25],

g1(x) =
1

2

∑
q

e2
q∆q(x) , (1)

where q is the quark flavor (q = u, d, s), eq is the electric charge of the quark, and

∆q is the contribution of the quark spin to the nucleon spin,

∆q(x) =
(
q↑ + q̄↑

)
(x)−

(
q↓ + q̄↓

)
(x) . (2)

Here q↑(x)
(
q↓(x)

)
is the probability of finding a quark with momentum fraction

x with its spin in the same (opposite) direction of the nucleon’s spin, and q̄↑(x)(
q̄↓(x)

)
is the probability of finding an antiquark with momentum fraction x with

its spin in the same (opposite) direction of the nucleon’s spin. Integrating over

the quark spin structure gives the net quark spin contribution to the nucleon spin

∆q =

∫ 1

0

[(
q↑ + q̄↑

)
(x)−

(
q↓ + q̄↓

)
(x)
]
dx . (3)
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1.2.2 The Ellis-Jaffe Sum Rule

The Ellis-Jaffe sum rule [26] relates the integral of the g1 spin structure function

to the axial charges [24],

gA = ∆u−∆d (4)

g
(8)
A = ∆u+ ∆d− 2∆s (5)

g
(0)
A = ∆u+ ∆d+ ∆s . (6)

where gA is the isovector axial charge, g
(8)
A is the SU(3) octet axial charge, and

g
(0)
A is the flavor-singlet axial charge. For the proton, the integral of the g1 spin

structure function is

Sp =

∫ 1

0

dxg1p(x)

=

∫ 1

0

dx
[ 4

18
∆u(x) +

1

18
∆d(x) +

1

18
∆s(x)

]
,

=
4

18
∆u+

1

18
∆d+

1

18
∆s ,

=
gA
12

+
g

(8)
A

38
+
g

(0)
A

9
.

(7)

The axial charges can be determined through experimental measurements. The

isovector axial charge, gA, can be obtained in neutron β-decay [27]. Assuming

SU(3) symmetry, g
(8)
A can be obtained though hyperon β-decay. If the net strange

contribution to the nucleon spin is assumed to be negligible, the flavor-singlet

charge is equal to the SU(3) octet charge,

∆s ∼ 0⇒ g
(0)
A = g

(8)
A . (8)
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1.2.3 Experimental Tests of the Ellis-Jaffe Sum Rule

One of the first experiments to test the Ellis-Jaffe sum rule through inclusive DIS

was the European Muon Collaboration (EMC) at CERN in 1989 [18, 2]. The EMC

scattered polarized muons off a polarized proton target and detected the scattered

muon in a forward muon spectrometer. Figure 2 shows the EMC measurement of

the integral of the g1 spin structure function as a function of the lower bound on

the integral, xm, and the expected value of the integral at xm = 0 from the Ellis-

Jaffe sum rule. There is a significant discrepancy between the measured value and

the value expected from theory. Assuming that the discrepancy comes from the

assumption that ∆s = 0, and not the SU(3) symmetry assumption, the extracted

non-zero value of ∆s to resolve the difference is

∆sEMC = −0.095± 0.016± 0.023 . (9)

This implies not only that the overall spin polarization of the strange quarks

and antiquarks in the nucleon sea is nonzero, but that they are polarized in the

opposite direction of the proton.

After the EMC result, many subsequent polarized target inclusive DIS experi-

ments tested the Ellis-Jaffe sum rule over the next few decades. See Refs. [28] and [25]

for detailed reviews. Several inclusive DIS polarized target experiments were per-

formed at SLAC [29, 30, 31] with a polarized electron beam, at CERN with the

polarized muon beam by the Spin Muon Collaboration (SMC) [32, 33] and by
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Figure 2: The integral of the g1(x) spin structure function measured by the EMC

experiment [2].

COMPASS [34], the polarized electron or positron HERA beam at DESY by the

HERMES [35, 36, 37] collaboration. A more recent measurements of the violation

of the Ellis-Jaffe sum rule from polarized muon inclusive DIS off a polarized target

in the COMPASS experiment in 2007 gives [34] ∆sCOMPASS = −0.08±0.01±0.02,

and from the HERMES experiment in 2007 gives [37] ∆sHERMES = −0.085 ±

0.013± 0.008± 0.009.

The nucleon spin structure can also be studied through semi-inclusive deep

inelastic scattering (SIDIS). In SIDIS, in addition to detecting the scattered lep-
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ton, at least one of the final state pions or kaons is detected. If the detected

hadron has a large enough fraction of the energy transfer, it can be assumed that

it contains the quark that was struck by the lepton [25]. A factor is included in

the measured spin structure functions that describes the probability of a struck

quark producing a pion or kaon with the measured energy fraction. This factor is

called a fragmentation function, and it can be used to reconstruct individual quark

flavor contributions to the nucleon spin. Several experiments have made measure-

ments of the strange quark spin through SIDIS including COMPASS [38, 39] at

CERN and HERMES [40, 41, 42] at DESY. Measurements of the strange quark

polarization in the nucleon through SIDIS tend to favor much smaller values of

∆s that are consistent with zero. While these results depend less on SU(3) flavor

symmetry than inclusive DIS results, they do depend strongly on the choice of

fragmentation functions. Results from global analyses of both DIS and SIDIS

data [43, 44, 45, 46, 47] tend to give negative values of ∆s.

In addition to the experimental effort, there has been a parallel effort to cal-

culate the standard model prediction of the nucleon structure using lattice QCD.

Early lattice QCD calculations of ∆s [48, 49] suggested negative values at a sim-

ilar scale to what is measured in inclusive DIS. The value found in Ref. [49] was

∆s = −0.12 ± 0.01. More recent calculations [50, 51, 52, 53] give results of ∆s

much closer to zero, but still negative. The newer results are more similar to

the values measured in SIDIS. For example, ∆s = −0.031 ± 0.017 was found in
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Ref. [51] and ∆s = −0.018± 0.006 was found in Ref. [53].

1.3 Neutrino Measurements of the Strange Spin Structure

Since neutrinos only interact via the weak force, neutrino-nucleon elastic scatter-

ing is sensitive to the weak currents and are great tools for measuring the axial

form factor, GA(Q2). See Refs. [54] and [55] for detailed reviews of the many mea-

surements of GA(Q2) through charged current quasi-elastic (CCQE) scattering.

Neutral current (NC) elastic neutrino-nucleon scattering (νN → νN) specifically

is sensitive to the NC form factor GNC
A (Q2) which contains contributions from the

up, down, and strange quarks to the spin structure of the nucleon (GA(Q2) only

contains contribution from the up and down quarks).

At the limit where the negative four-momentum transfer squared, Q2, goes to

zero, the NC axial form factor becomes a combination of the net spin contribution

from each of the quarks to the nucleon spin [25],

GNC
A (Q2 = 0) =

1

2
(∆u−∆d−∆s) (10)

The reconstructed Q2 is determined entirely from the recoil nucleon kinetic

energy using
Q2
N = −q2 = −(p′N − pN)2

= −(E ′N − EN)2 + (p′N − pN)2

= 2TNMN ,

(11)

where p is four-momentum, E is energy, p is three-momentum, M is mass, T is
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kinetic energy determined by the length of the track, the N subscript represents

the nucleon in the neutrino-nucleon interaction, the prime represents the final

state, and the nucleon momentum in the nucleus is assumed to be small compared

to the final nucleon momentum. This means that the ability to measure the axial

form factor at low Q2 in NC elastic neutrino-nucleon scattering depends on the

experimental nucleon energy threshold.

Two previous neutrino experiments have performed a measurement of ∆s

through neutral current elastic neutrino-nucleon scattering. The first was the

E734 experiment [3] at Brookhaven National Lab (BNL) in 1987, and the second

was the MiniBooNE experiment [5] at Fermilab in 2010.

1.3.1 The BNL E734 Experiment

The main target and detector of the E734 experiment was 170 tons and was made

of a combination of liquid scintillator cells and proportional drift tubes (PDTs).

The liquid scintillator composed 80% of the target and was used for calorimetry

and timing, while the PDTs were used for position information. Additionally,

there was a electromagnetic shower counter and a muon spectrometer just down-

stream of the main detector. The full detector schematic is shown in Fig. 3. The

E734 detector sat in a neutrino beam at BNL that could run in either neutrino of

antineutrino mode with a mean energy of 1.3 GeV for neutrino and 1.2 GeV for

antineutrinos. Note that we are using natural units with the speed of light, c, set
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equal to one.

Figure 3: Schematic of the BNL E734 detector [3].

A simultaneous fit to the neutrino-proton and antineutrino-proton neutral

current elastic cross sections in the range between Q2 = 0.45 GeV2 and Q2 =

1.05 GeV2 was performed to extract the neutral current axial form factor. In the

parameter estimation, the NC axial form factor was assumed to have the form

GNC
A (Q2) =

1

2

gA
(1 +Q2/M2

A)2
(1 + η) , (12)

where gA is the weak coupling constant, MA is the axial mass, and η is a factor

that encodes the difference between the charged current axial form factor and

the strange axial form factor. This form assumes that both parts of the form

12



factor have the exact same shape. If the difference is only due to the net spin

contribution of the strange quark, ∆s, then ∆s = −ηgA which was found to be

−0.15 ± 0.09 in this analysis. Figure 4a shows the measured data and the cross

section fits. Figure 4b shows the bounds on the axial mass MA and η from the

fit.

(a) Measured neutrino-proton and

antineutrino-proton cross sections.

(b) Extracted neutral current axial

form factor parameters.

Figure 4: Results from the Brookhaven E734 measurement of the neutral current

elastic cross section.

A later analysis of the E734 NC elastic data was performed [56] in which the

strange part of the electric and magnetic form factors was not assumed to be zero.

Four fits to the neutrino-proton and antineutrino-proton cross section data were
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performed. In the first fit, only the axial mass was allowed to vary and the strange

quark contribution to the electric, magnetic, and axial form factors were all held

fixed at zero. In the second, the strange contribution to the electric and magnetic

form factors were fixed at zero, but the axial mass and the strange axial form

factor were allowed to vary. In the third fit, all three strange form factors and

the axial mass were allowed to vary, and in the last fit, the strange form factors

were all allowed to vary, but the axial mass was held to the world average at the

time, MA = 1.032± 0.036 GeV. The same form of the axial form factor in Eq. 12

was assumed and the strange electric and magnetic form factors were assumed to

have the same shape as the charged current electric and magnetic form factors.

The extracted value of ∆s ranged from ∆s = −0.13 ± 0.09 in the second fit to

∆s = −0.21± 0.10 in the fourth fit. Each of the extracted ∆s values is consistent

with the original measurement and with a ∆s being negative. Additionally, a

strong correlation between ∆s and MA was again observed. In the first fit with

∆s fixed at zero, a best fit to the data was found when MA = 1.086± 0.015 GeV

which is very consistent with the original results in Ref. [3] shown in Fig. 4b.

An additional analysis of the E734 data considering ratios of neutral current

elastic interactions to charged current elastic interactions was performed [57].

Specifically, they looked at the neutrino-antineutrino asymmetry

Ap(Q2) =

(
dσ
dQ2

)
νp→νp

−
(

dσ
dQ2

)
ν̄p→ν̄p(

dσ
dQ2

)
νn→µ−p

−
(

dσ
dQ2

)
ν̄p→µ+n

. (13)
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This asymmetry has an enhanced sensitivity to the strange axial and magnetic

form factors. It was found that the experimental uncertainty was too large to

determine ∆s and that a large factor of the uncertainty was due to the uncertainty

on the axial mass. This analysis also assumed the dipole form of the axial form

factor in Eq. 12.

A global analysis of the strange quark contribution to the electromagnetic and

axial form factors performed in Ref. [58] included E734 NC elastic neutrino-proton

scattering data. The analysis combined the E734 data with parity-violating elas-

tic polarized-electron-proton scattering data from the G0 [59] and HAPPEx [60]

experiments. The electron-proton data are sensitive to the strange contribution to

the electric and magnetic form factors but not very sensitive to the strange axial

form factor. The analysis found the extracted ∆s to be consistent with negative

values.

1.3.2 The MiniBooNE Experiment

The main target and detector of the MiniBooNE experiment was 800 tons of

scintillator oil in a 12.2 m diameter spherical tank. Charged particles from the

neutrino interactions in the mineral oil produced Cerenkov light which was col-

lected by 1520 8-inch PMTs surrounding the oil. A schematic of the detector is

shown in Fig. 5. MiniBooNE sat in the Booster Neutrino Beam (BNB) at Fermi-

lab that can run in either neutrino or antineutrino mode with an average neutrino
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Figure 5: Schematic of the MiniBooNE detector [4].

energy of ∼800 MeV [61].

The MiniBooNE collaboration performed a ∆s fit to the ratio of the neutrino-

proton to the neutrino-nucleon NC elastic cross section in the proton kinetic energy

between T = 350 MeV and T = 800 MeV. This corresponds to a range of Q2 =

0.66 GeV2 to Q2 = 1.5 GeV2. Figure 6 shows the measured ratio and the fits to

the data. In the analysis, the dipole shape in Eq. 12 was used for the axial form

factor. When the value of the axial mass was held to MA = 1.35 GeV a value of

∆s = 0.08±0.26 was found, and when the axial mass was held to MA = 1.23 GeV
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Figure 6: Ratio of the neutrino-proton NC elastic cross section to the neutrino-

nucleon NC elastic cross section measured in MiniBooNE [5].

a value of ∆s = 0.00 ± 0.30. Both of these values are consistent with the E734

measurement and with zero.

A later analysis of the MiniBooNE data was performed which included a two-

body current contribution to the cross section [62]. The inclusion of the two-body

current was done using the NuWro Monte Carlo neutrino event generator [63].

The original MiniBooNE analysis used the NUANCE Monte Carlo neutrino event

generator [64]. A simultaneous extraction of ∆s and the axial mass from the asym-

metry Ap(Q2) assuming the dipole form of the axial form factor in Eq. 12 and

including two-body currents resulted in an axial mass value of MA = 1.1+0.13
−0.15 GeV

and ∆s = −0.4+0.5
−0.3. This result of ∆s is consistent both with the original Mini-
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BooNE result and with zero.

Very recently, another re-analysis of the MiniBooNE result was performed us-

ing updated lattice QCD calculations of the strange electric and magnetic form

factors and the measured MiniBooNE NC elastic nucleon cross section [6]. No-

tably, this analysis used a z-expansion fit to the NC axial form factor (described

in Sec. 2.6.1). A value of ∆s = −0.196 ± 0.127 ± 0.041 was found. The result

was used to predict the BNL E734 NC elastic νp and ν̄p measurements and was

found to be consistent. The NC elastic cross sections calculated using the results

are shown compared to MiniBooNE data in Fig. 7a and compared to E734 data

in Fig. 7.

(a) Extracted NC elastic cross section

compared to MiniBooNE data.

(b) Extracted NC elastic cross section

compared to E734 data.

Figure 7: Neutral current elastic cross section results from Ref. [6]

.

18



2 Neutrino-Nucleon interactions

This section describes the mathematical foundation for the analysis. It gives

a derivation of the neutral current elastic neutrino-proton cross section, how the

cross section depends on the vector and axial form factors, and the relationship

of the neutral current form factors to the ones measured in charged current scat-

tering. The section ends with a discussion of the shape of the form factors that

are used in the analysis.

2.1 Two-particle interactions

The differential cross section for two-fermion scattering, shown in Fig. 8, is given

by Fermi’s Golden Rule [65]

σ =

∫
(2π)4|M|2

4
√

(p1 · p2)2 −m2
1m

2
2

× dΦ2(p1 + p2; p′1, p
′
2) , (14)

where dΦ2(p1 + p2; p′1, p
′
2) is an element of two-body phase space given by

dΦ2(p1 + p2; p′1, p
′
2) = δ4(p1 + p2 − p′1 − p′2)

d3p′1
(2π)32E ′1

d3p′2
(2π)32E ′2

, (15)

p1 and p2 are the incoming four-momenta of the fermions f1 and f2, respectively,

p′1 and p′2 are the outgoing fermion momenta, m1 and m2 are the fermion masses,

E ′1 and E ′2 are the outgoing fermion energies, andM is the scattering amplitude.

Combining Eqns. 14 and 15 gives

σ =

∫
|M|2

64π2

δ4(p1 + p2 − p′1 − p′2)

E ′1E
′
2

√
(p1 · p2)2 −m2

1m
2
2

dp′1dp
′
2 . (16)
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Figure 8: Feynman diagram of two-fermion scattering.

The scattering amplitude is given by the matrix element of the scattering

matrix, S, between the final and initial states (M = 〈f |S|i〉). The general form

of S is [65]

S =
∞∑
n=0

(−i)n

n!

∫
· · ·
∫
d4x1 d

4x2 . . . d
4xn T{Ĥ′I(x1)Ĥ′I(x2) . . . Ĥ′I(xn)} , (17)

where Ĥ′I(xi) is the interaction Hamiltonian density.

The matrix element can more easily be determined using Feynman calculus.

For a massive, vector-boson propagator the matrix element for this interaction is

given by [65]

M = 〈f |S|i〉 = 〈p′1|Jµ(0)|p1〉
i

q2 −M2
V

(−gµν + qµqν/M
2
V )〈p′2|Jµ(0)|p2〉 , (18)
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where q is the four-momentum carried by the vector-boson propagator, MV is the

mass of the propagator, Jµ(0) is the probability current operator, and gµν is the

metric tensor.

2.2 Electroweak interactions

The charged current, jµCC , which corresponds to the exchange of a W± boson, and

the neutral current, jµNC , which corresponds to the exchange of the Z0 boson are

given by [66]

jµCC =
∑
f

ψ̄fγ
µ(1− γ5)

1

2
(τ1 + iτ2)ψf (19)

jµNC =
∑
f

ψ̄fγ
µ(1− γ5)

1

2
(τ3)ψf − 2 sin2(θW )jµem (20)

where jµem is the electromagnetic current, ψf are the weak isospin doublets, and

τi are the Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (21)

The lepton weak isospin doublets are [66]

ψe =

(
ν̂e
ê−

)
, ψµ =

(
ν̂µ
µ̂−

)
, ψτ =

(
ν̂τ
τ̂−

)
, (22)

and the quark weak isospin doublets are

ψ1 =

(
û

d̂′

)
, ψ2 =

(
ĉ

ŝ′

)
, ψ3 =

(
t̂

b̂′

)
, (23)
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where d′, s′, and b′ represent the “mixed” statesd̂′ŝ′
b̂′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d̂ŝ
b̂

 . (24)

The matrix, V , is the Cabibbo-Kobayashi-Maskawa matrix. These doublets con-

tain the allowed weak transitions where Vab is the probability of a transition from

a quark with flavor a to a quark with flavor b.

2.2.1 The charged and neutral currents

The linear combination of Pauli matrices in the charged current

1

2
τ+ =

1

2
(τ1 + τ2) , (25)

acts as an “isospin raising matrix” and corresponds to the exchange of a W+

boson. For the leptons, this gives [66]

jµCC(leptons) =
∑
l=e,µ,τ

(¯̂νl
¯̂
l

)
γµ(1− γ5)

1

2

(
0 1
0 0

)(
ν̂l
l̂

)
=
∑
l=e,µ,τ

¯̂νlγ
µ(1− γ5)

1

2
l̂ ,

(26)

and, similarly, for the quarks we get

jµCC(quarks) = ¯̂uγµ(1− γ5)
1

2
d̂′ + ¯̂cγµ(1− γ5)

1

2
ŝ′ + ¯̂tγµ(1− γ5)

1

2
b̂′ , (27)

with the total charged current being jµCC = jµCC(leptons) + jµCC(quarks).

In neutral current scattering, 1
2
τ3 gives the weak isospin which acts as a “weak

charge”. The electromagnetic current is given by

jµem =
∑
f

Qf
¯̂
fγµf̂ (28)
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where the sum is over the fermion flavors, and Qf is the electric charge of f . So,

the total neutral current is

jµNC =
∑
l=e,µ,τ

(
¯̂νlγ

µ(1− γ5)
1

2
ν̂l − ¯̂

lγµ(1− γ5)
1

2
l̂ + sin2 θW

¯̂
lγµl̂

)
+
∑
q=u,c,t

(
¯̂qγµ(1− γ5)

1

2
q̂ − sin2 θW

2

3
¯̂qγµq̂

)
+
∑
q=d,s,b

(
−¯̂qγµ(1− γ5)

1

2
q̂ + sin2 θW

1

3
¯̂qγµq̂

)
.

(29)

2.2.2 V−A structure

We can separate the currents into their vector and pseudovector, or axial vector,

components. The terms that contain just γµ behave like vectors under a parity

transformation [67]

P̂ψ̂(x, t)P̂
−1
γµ P̂ ˆψ(x, t)P̂

−1
= −P̂ψ̂(−x, t)P̂

−1
γµ P̂ ˆψ(−x, t)P̂

−1
(30)

where P̂ is the parity operator

P : x→ −x, t→ t . (31)

The terms that contain γµγ5 behave like axial vectors under a parity transforma-

tion

P̂ψ̂(x, t)P̂
−1
γµγ5 P̂ ˆψ(x, t)P̂

−1
= +P̂ψ̂(−x, t)P̂

−1
γµγ5 P̂ ˆψ(−x, t)P̂

−1
. (32)

The charged current is

jµCC =
g√
2

[ ∑
l=e,µ,τ

¯̂νl(γ
µ − γµγ5)

1

2
l̂

+ ¯̂u(γµ − γµγ5)
1

2
d̂′ + ¯̂c(γµ − γµγ5)

1

2
ŝ′ + ¯̂t(γµ − γµγ5)

1

2
b̂′

]
,

(33)
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and the neutral current becomes

jµNC =
g

2 cos θW

[ ∑
l=e,µ,τ

(
¯̂νl(g

l
V γ

µ − glAγµγ5)ν̂l +
¯̂
l(glV γ

µ − glAγµγ5) l̂
)

+
∑

q=u,d,c,s,t,b

(
−¯̂q(gqV γ

µ − gqAγ
µγ5)q̂

) ]
.

(34)

where

gfV =
1

2
τ f3 − 2 sin2 θWQf , gfA =

1

2
τ f3 . (35)

2.3 Electroweak Scattering Matrix Elements

To calculate the charged-current neutrino-nucleon scattering matrix element, as

shown in Fig. 9a, we need to determine the lepton CC matrix element, l〈k′|JµCC(0)|k〉νl ,

and the nucleon CC matrix element, p〈p′|JµCC(0)|p〉n, and for neutral-current, as

shown in Fig. 9b, we need the lepton NC matrix element, νl〈k′|J
µ
NC(0)|k〉νl , and

the nucleon NC matrix element, p〈p′|JµNC(0)|p〉p. Leptons are point-like particles,

so their matrix elements are straight-forward

l〈k′|JµCC(0)|k〉νl = −iGF√
2
ū(k′)(γµ − γµγ5)u(k) ,

νl〈k′|J
µ
NC(0)|k〉νl = −GF√

2
ū(k′)(γµ − γµγ5)u(k) .

(36)

2.3.1 Nucleon matrix elements

Since nucleons have a finite structure, the nucleon matrix elements have a more

complicated form. The current is corrected by form factors which encode the

longitudinal nucleon structure.
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(a) Charged current.
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q

(b) Neutral current.

Figure 9: Feynman diagrams of elastic neutrino-nucleon scattering.

If we define the vector and axial parts of the nucleon currents by

vµi =
¯̂
ψf γ

µ1

2
τi ψ̂f ,

aµi =
¯̂
ψf γ

µγ5
1

2
τi ψ̂f ,

(37)

where ψ̂ are the quark doublets and τi are the Pauli matrices still, then the nucleon

charged and neutral current become

jµCC = vµ+ − a
µ
+ ,

jµNC = vµ3 − a
µ
3 − 2 sin2 θW j

µ
em;q ,

(38)

where vµ+ = vµ1 + ivµ2 and aµ+ = aµ1 + iaµ2 . The nucleon matrix elements become

p〈p′|JµCC |p〉n = p〈p
′|V µ

+ |p〉n − p〈p
′|Aµ+|p〉n ,

p〈p′|JµNC |p〉p = p〈p
′|V µ

3 |p〉p − p〈p
′|Aµ3 |p〉p − p〈p

′|Jµem|p〉p ,
(39)

where Jµ, V µ, and Aµ are current operators.

2.3.2 Electromagnetic Scattering

It is easiest to first find an equation for jµem;q in terms of the electric and magnetic

form factors. The nucleon electromagnetic current should have the same vector
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form as the electromagnetic current for point-like particles. The available physical

variables to construct the nucleon EM current are p, p′, γµ. The most general form

is [67]

Γµ = γµ · A+ (p′µ + pµ) ·B + (p′µ − pµ) · C , (40)

where Γµ is given by the equation p〈p′|Jµem(0)|p〉p = ū(p′)Γµu(p), and A, B, and

C are arbitrary form factors. Γµ is constrained further by the Ward identity [68],

qµΓµ = 0, which guarantees current conservation. The γµ and (p′µ + pµ) terms in

qµΓµ go to zero, but the (p′µ − pµ) term does not, so C = 0. Using the Gordon

identity [69], the general form for the nucleon EM current matrix element is

p〈p′|Jµem(0)|p〉p = ū(p′)

[
γµF1(Q2) +

iσµνqµ
2M

F2(Q2)

]
u(p) . (41)

The form factors F1 and F2 are the Dirac and Pauli form factors, respectively,

and they are functions of Q2 = −q2, the negative four-momentum transfer. They

can be transformed into the Sachs form factors, GE and GM by the relationships

GE(Q2) = F1(Q2)− Q2

4M2
F2(Q2) , GM(Q2) = F1(Q2) + F2(Q2) . (42)

The electric form factor, GE encodes the longitudinal electric charge structure of

the nucleon and the magnetic form factor, GM , encodes the longitudinal magnetic

structure. At the limit when Q2 goes to zero, the Sachs form factors become the

net charge and magnetic moment of the nucleon.

GE;p(Q
2 = 0) = 1 , GM ;p(Q

2 = 0) = µp ,

GE;n(Q2 = 0) = 0 , GM ;n(Q2 = 0) = µn ,

(43)
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where µp and µn are the proton and neutron magnetic moments.

2.3.3 Vector current

The quark part of the electromagnetic current, jµem;q, can be written as [67]

jµem;q =
¯̂
ψf Qfγ

µ ψ̂f

=
¯̂
ψf (τ3 +

1

6
)γµ ψ̂f

= vµ3 + vµ0 ,

(44)

where vµ0 = 1
6

¯̂
ψf γ

µψ̂f . Now we can write the nucleon electromagnetic current

matrix element in terms of the vector and isoscalar parts

p(n)〈p′|Jµem(0)|p〉p(n) = p(n)〈p
′|V µ

3 (0) + V µ
0 (0))|p〉p(n)

= p(n)〈p
′|V µ

3 (0)|p〉p(n) + p(n)〈p
′|V µ

0 (0)|p〉p(n) ,

(45)

Since V µ
3 behaves as a vector under the charge symmetry operator and V µ

0 behaves

as a scalar, the following equations are true

p〈p
′|V µ

3 (0)|p〉p = − n〈p
′|V µ

3 (0)|p〉n ,

p〈p
′|V µ

0 (0)|p〉p = + n〈p
′|V µ

0 (0)|p〉n .
(46)

Then

p〈p
′|V µ

3 (0)|p〉p =
1

2

[
p〈p
′|Jµem(0)|p〉p − n〈p

′|Jµem(0)|p〉n
]
, (47)

p〈p
′|V µ

0 (0)|p〉p =
1

2

[
p〈p
′|Jµem(0)|p〉p + n〈p

′|Jµem(0)|p〉n
]
. (48)

Combining equations 41 and 47 gives

p〈p
′|V µ

3 (0)|p〉p = ū(p′)

[
γµF V

1 (Q2) +
iσµνqµ

2M
F V

2 (Q2)

]
u(p) , (49)
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where the vector form factors, F V
1 and F V

2 are defined as

F V
1 (Q2) =

1

2

(
F1,p(Q2)− F1,n(Q2)

)
,

F V
2 (Q2) =

1

2

(
F2,p(Q2)− F2,n(Q2)

)
.

(50)

The isoscalar nucleon matrix element is then

〈p′|V µ
0 (0)|p〉 = ū(p′)

[
γµ

1

2

(
F1,p(Q

2) + F1,n(Q2)
)

+
iσµνqµ

2M

1

2

(
F2,p(Q

2) + F2,n(Q2)
)]
u(p)

(51)

Under the conserved vector current (CVC) hypothesis [70, 71] the “raising”

and “lowering” vector currents, vµ±, in the charged current interactions are the

same as the vector part of the electromagnetic current, vµ3 .

2.3.4 Axial current

The axial current nucleon matrix elements can also be parameterized in terms

of form factors. Starting with the charged axial current, the most general form

contains an axial, a pseudoscalar, and a tensor term, [67]

p〈p
′|Aµ+(0)|p〉n = ū(p′)

[
γµγ5GA(Q2) +

qµγ5

2M
GCC
P (Q2) +

iσµνqµγ
5

2M
GCC
T (Q2)

]
u(p) ,

(52)

where GA, GCC
P , and GCC

T are the axial form factors. From isospin symmetry, we

have

p〈p
′|Aµ+(0)|p〉n = n〈p

′|Aµ−(0)|p〉p ≡ p〈p|A
µ
+(0)|p′〉∗n , (53)

which implies that GCC
T (Q2) = 0. In quasi-elastic scattering the pseudoscalar

term containing GCC
P (Q2) is proportional to the lepton mass and can be ignored
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in neutral current scattering since mν ≈ 0. The charged current axial matrix

element is then just

p〈p
′|Aµ+(0)|p〉n = ū(p′) γµγ5GA(Q2)u(p) . (54)

The form factor GA encodes the longitudinal spin structure of the nucleon due to

the spin of the up and down quarks and is referred to as the charged current axial

form factor, or just the axial form factor.

The most general form for the neutral axial current nucleon matrix element is

similarly

p〈p
′|Aµ3(0)|p〉n = ū(p′)

[
γµγ5GNC

A (Q2) +
qµγ5

2M
GNC
P (Q2) +

iσµνqµγ
5

2M
GNC
T (Q2)

]
u(p) .

(55)

Just as in the charged-current case, the tensor part is zero, GNC
T (Q2) = 0, and

we can again neglect GNC
P which is proportional to the lepton mass. The neutral

axial current matrix element is

p〈p
′|Aµ3(0)|p〉n = ū(p′) γµγ5GNC

A (Q2)u(p) . (56)

which can be related to the charged current axial form factor through isospin sym-

metry. The relationship between the neutral and charged axial current operators

is

[Ik, Aµj ] = iεkjlAµl , (57)

where Ik is the total isospin operator, and εkjl is the antisymmetric tensor. From
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this relationship, we get

p〈p
′|Aµ3(0)|p〉p =

1

2 p〈p
′|Aµ+(0)|p〉n , (58)

which implies

GNC
A (Q2) =

1

2
GA(Q2) , (59)

assuming only contributions from up and down quarks.

2.4 Strangeness in the nucleon

If contributions to the nucleon from quarks heavier than the strange are neglected,

the quark part of the charged and neutral currents can be separated between the

light quarks and the strange quark, [67]

jµCC(quarks) = ¯̂u(γµ − γµγ5)
1

2
τ±û− ¯̂

d(γµ − γµγ5)
1

2
τ±d̂

≡ ¯̂
N(γµ − γµγ5)

1

2
τ±N̂ ,

(60)

jµNC(quarks) =
¯̂
N(γµ − γµγ5)

1

2
τ3N̂ − ¯̂s(γµ − γµγ5)

1

2
τ3ŝ

− 2 sin2 θW j
µ
em;q .

(61)

2.4.1 Strange currents

If we redefine the neutral vector currents as

vµ3 ≡
¯̂
Nγµ

1

2
τ3N̂

aµ3 ≡
¯̂
Nγµγ5

1

2
τ3N̂ ,

(62)
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and define the strange part of the currents as

vµs ≡ ¯̂sγµŝ

aµs ≡ ¯̂sγµγ5ŝ ,

(63)

we can combine Eqs. 60, 61, 62, and 63 to get

jµCC(quarks) = (vµ3 − a
µ
3) , (64)

jµNC(quarks) = (vµ3 − a
µ
3)− 1

2
(vµs − aµs )− 2 sin2 θW j

µ
em;q . (65)

The quark part of the electromagnetic current can also be separated into light

and heavy quark components. Separating the vector and isoscalar terms from

Eq. 44, into quark components gives

jµem;q = (vµ3 + vµ0 )− 1

2
(vµs + vµ0s) , (66)

where vµ3 and vµs are as defined in Eqs. 62 and 63, and vµ0 and vµ0s are defined as

vµ0 ≡
1

6
¯̂
NγµN̂ ,

vµ0s ≡ −
1

3
¯̂sγµŝ .

(67)

The quark part of the neutral current becomes

jµNC(quarks) = (1−2 sin2 θW )(vµ3 −
1

2
vµs )−(aµ3−

1

2
aµs )−2 sin2 θW (vµ0 −

1

2
vµ0s) . (68)

2.4.2 Strange nucleon matrix elements

The single-nucleon matrix elements for the charged current becomes

p〈p
′|JµCC(0)|p〉n = p〈p

′|V µ
3 (0)|p〉n − p〈p

′|Aµ3(0)|p〉n . (69)
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In terms of the vector and axial form factors, the matrix element is

p〈p
′|JµCC(0)|p〉n = ū(p′)

[
γµF V

1 (Q2) +
iσµνqµ

2M
F V

2 (Q2)− γµγ5GA(Q2)

]
u(p) . (70)

The single-nucleon matrix elements for the neutral current becomes

p〈p
′|JµNC(0)|p〉p = (1− 2 sin2 θw)(p〈p

′|V µ
3 (0)|p〉p −

1

2 p〈p|V
µ
s (0)|p〉p)

−(p〈p
′|Aµ3(0)|p〉p −

1

2 p〈p|A
µ
s (0)|p〉p)

−2 sin2 θW (p〈p
′|V µ

0 (0)|p〉p −
1

2 p〈p|V
µ

0s(0)|p〉p) .

(71)

If we ignore the strange components of the Dirac and Pauli form factors (F1 and

F2), the matrix element is

p〈p
′|JµNC(0)|p〉p = ū(p′)

[
(1− sin2 θW ){γµFNC

1 (Q2) +
iσµνqµ

2M
FNC

2 (Q2)}

−γµγ5G
NC
A (Q2)− 2 sin2 θW{γµF p

1 (Q2) +
iσµνqµ

2M
F p

2 (Q2)}
]
u(p) ,

(72)

where

FNC
1,2 (Q2) =

1

2
F V

1,2(Q2) , (73)

and

GNC
A =

1

2
GA(Q2)− 1

2
Gs
A(Q2) . (74)

The neutral current axial form factor, GNC
A , represents the longitudinal spin struc-

ture of the nucleon due to all three of the quark flavors (up, down, and strange).

2.5 Neutrino-proton neutral current elastic cross section

We know have everything to calculate the neutrino-proton neutral current elastic

cross section. Figure 10 shows the Feynman diagram of the interaction. The neu-
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trino is represented by the letter ν with incoming four-momentum k and outgoing

four-momentum k′. The proton is represented by the letter p with incoming four-

momentum p and outgoing four-momentum p′. The four-momentum transferred

by the Z0 boson is q with q = k − k′ = p′ − p.

ν ν

p p

Zº

k k'

p'p

q

Figure 10: Feynman diagram of neutrino-proton neutral current elastic scattering.

Combining Eqs. 16, 18, 36, and 72, averaging over the spin states, and setting

the outgoing neutrino mass to zero gives (in the LLewellyn-Smith formalism) [72]

(
dσ

dQ2
)NC =

G2
FM

2
p

8πE2
ν

[
A− (4MpEν −Q2)

M2
P

B +
(4MpEν −Q2)2

M4
P

C

]
(75)

with

A = 4τ
[
(1 + τ)(GNC

A )2 − (1− τ)(FNC
2 )2 + τ(1− τ)(FNC

2 )2 + 4τFNC
1 FNC

2

]
,

(76)

B = 4τ
[
GNC
A (FNC

1 + FNC
2 )

]
, (77)

C =
1

4

[
(GNC

A )2 + (FNC
1 )2 + (FNC

2 )2
]
, (78)
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where Eν is the incoming neutrino energy, MP is the proton mass, τ = Q2

4MP
, and

the form factors are functions of Q2.

2.6 Determination of the Nucleon Form Factors

Up to this point, we have only parameterized the electromagnetic and weak cur-

rents in terms of the vector and axial form factors, but have said nothing about

their form. The actual form factors are determined empirically from experiment.

To determine the form factors from experimental data some parameterization

must be chosen.

There are many existing parameterizations of the electromagnetic form factors

which have been fit to electromagnetic scattering data. Since there are much more

data available from electromagnetic scattering than from weak scattering, the

parameterizations of the electromagnetic form factors can be more precise with

more parameters. See [73] for an extensive review of the nucleon electromagnetic

form factors.

The most common parameterization of the axial form factor, the dipole form,

has only one free parameter known as the axial mass, MA,

G
(dipole)
A (Q2) =

GA(0)

(1 +Q2/M2
A)2

. (79)

The dipole form of the axial form factor was motivated by early models of the

electromagnetic form factors which are no longer used. There hasn’t been strong
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physical motivation for new axial form factor parameterizations since not as much

data exist as for the electromagnetic form factors.

Constraining the shape of the axial form factor to one parameter can lead to

both overconfidence in the uncertainty of the measurement of the form factor and

disagreement of the parameters between different experimental measurements at

different ranges of negative four-momentum transfer squared [74].

2.6.1 Model-Independent Form Factor Parameterization

Both the electromagnetic and axial form factors can be determined using a model-

independent parameterization referred to as z expansion [75].

The z expansion parameterization is made by mapping Q2 onto a domain

where the form factor, F is analytic

z(Q2, tcut, t0) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (80)

where tcut is the leading threshold for states that can be produced by the vector

or axial current. The form factor is analytic everywhere where Q2 ≥ −tcut. In

the case of the electromagnetic (vector) form factors, tcut = (2mπ)2 (two-pion

threshold). In the axial form factor case, tcut = (3mπ)2 (three-pion threshold) [76].

The parameter t0 is an arbitrary number that can be chosen to minimize the

absolute value of z [77].

Since F (z(Q2)) is analytic by definition of z, and z can be constrained to be
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less than unity by choice of t0 and the finite range of Q2 for a given experiment,

the Taylor series of F (z(Q2)) around zero will converge to the true F (Q2)

F (Q2) =
∞∑
k=0

akz(Q2)k , (81)

where ak are dimensionless parameters that encode the nucleon structure.

Physical quantities can still be extracted from the general form of the form

factors. For example, the electric charge radius is still defined by the slope of the

electric form factor at Q2 = 0 and the axial mass can be redefined by the slope of

the axial form factor at Q2 = 0. Importantly, the net contribution to the proton

spin from the individual quark spins, ∆q, is the value of the axial form factor at

Q2 = 0, and specifically, the net contribution to the spin of the proton from the

spin of the strange quarks in the nucleon is equal to the value of the strange axial

form factor at Q2 = 0.

2.6.2 Fits of z Expansion Form Factors to Data

An approximation to the general form of the form factors can be made by fitting

the coefficients, ak, out to a value kmax

F (Q2) ≈
kmax∑
k=0

akz(Q2)k . (82)

Obviously, the larger kmax is, the better the approximation will be. The limit of

kmax is generally determined by the experimental data.
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According to asymptotic scaling predictions in QCD [78], the vector and axial

form factors should have a 1/Q4 behavior at large values of Q2. This can be

encoded in the z expansion parameterization by enforcing four sum rules [79]

dn

dzn
F
∣∣∣
z=1

= 0 , n = 0, 1, 2, 3 . (83)

Enforcing these sum rules means that there are fewer than kmax free parameters

in the z expansion fit.

The optimal value for t0 can be chosen to minimize the maximum size of |z| [77]

toptimal
0 (Q2) = tcut

(
1−

√
1 +Q2

max/tcut

)
, (84)

where Q2
max is the maximum Q2 in the data being fit to.

Fits of the electric and magnetic form factor z expansion coefficients to data

have been performed in [80, 81, 79, 82]. We use the recent fit to electron scatter-

ing data performed in [82]. In it, the proton electric and magnetic form factors,

Gp
E(Q2) and Gp

M(Q2), are fit simultaneously up to kmax = 12 (seven free param-

eters) using a previous unpolarized electron-proton scattering data and Gp
E/G

p
m

ratios extracted from polarized electron-proton data. The neutron electric and

magnetic form factors, Gn
E(Q2) and Gn

M(Q2), are fit separately to up kmax = 10

(five free parameters) using polarized and unpolarized electron-deuterium and

electron-helium-3 scattering data.

Fits to the charged current axial form factor z expansion coefficients to neu-

trino data have been performed in [74, 83, 77] We use the fit to deuterium
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bubble chamber neutrino data performed in [77]. The form factor, GA(Q2), is

fit up to kmax = 8 (four free parameters) using accelerator neutrino-deuterium

data from the deuterium bubble chamber experiments at Argonne National Lab

(ANL) [84, 85, 86], BNL [87], and FNAL [88]. They found results similar to a

dipole form but with larger, more realistic uncertainty estimates.

2.6.3 z Expansion Fit to the Neutral Current Axial Form Factor

There are no existing fits of the neutral current axial form factor to data using

the z expansion parameterization. In this analysis, we do a three-parameter fit

of the strange part of the NC axial form factor to MicroBooNE neutral current

elastic neutrino-proton scattering data and use the previous fit to the CC axial

form factor in [77] for the up and down quark spin contributions.

GNC
A (Q2) = GA(Q2) (previous fit)

+Gs
A(Q2) (fit to MicroBooNE data) .

(85)

The Q2 range of the NC elastic data that we will use for the fit in MicroBooNE

is from 0.1 GeV2 to 1.0 GeV2. Because the MicroBooNE NC elastic proton data

set has relatively low statistics (see Sec. 5.3), we do a fit to the data with only

three free parameters. This corresponds to kmax = 6 with asi for i = 3, 4, 5, 6

determined by asi for i = 1, 2, 3, and the sum rules in Eq. 83. The strange axial

form factor is written as

Gs
A(z) = as0 + as1z + as2z

2 + as3z
3 + as4z

4 + as5z
5 + as6z

6 , (86)
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with asi (i = 0, 1, 2) free parameters to fit to data, and

as3 = −20as0 − 10as1 − 4as2 , (87)

as4 = +45as0 + 20as1 + 6as2 , (88)

as5 = −36as0 − 15as1 − 4as2 , (89)

as6 = +10as0 + 4as1 + as2 . (90)

where asi are the coefficients of the strange axial form factor that we are fitting to

data, and z ≡ z(Q2) from Eq. 80.

The net contribution of the strange quark spin to the spin of the proton, ∆s,

is defined as the value of the strange axial form factor at Q2 = 0,

∆s = as0 + as1z0 + as2z
2
0 + as3z

3
0 + as4z

4
0 + as5z

5
0 + as6z

6
0 , (91)

where

z0 = z(Q2 = 0, tcut, t0) =

√
tcut −

√
tcut − t0√

tcut +
√
tcut − t0

. (92)

The specific fitting procedure and parameters are described in Sec. 6.
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3 The MicroBooNE experiment

MicroBooNE is an accelerator neutrino experiment at Fermilab. The experiment

measures neutrino physics properties by studying the interactions of neutrinos

produced by Fermilab accelerators. The MicroBooNE detector is a liquid argon

time projection chamber (LArTPC) with an additional light collection system.

LArTPC technology is relatively new, and allows for high-resolution imaging of

the neutrino interactions in the liquid argon. The production of the neutrino

beam, the MicroBooNE LArTPC, and the light collection system are described

in this section.

3.1 MicroBooNE Physics Goals

MicroBooNE was designed to investigate the low-energy electron-like excess seen

in MiniBooNE [20, 21]. MiniBooNE observed an excess of electron like tracks in

the muon neutrino to electron neutrino oscillation search in the neutrino energy

range below 0.5 GeV. Figure 11 shows the observed excess from the most recent

analysis of the data in [21]. If the excess is due to the νµ to νe oscillations, it

cannot be described by the standard three neutrino oscillation model, and it may

be due to new physics such a fourth generation of neutrinos that do not interact

through any of the standard model forces. The MiniBooNE experiment uses an oil

Cerenkov detector which is unable to distinguish between electrons and photons
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at these low energies, and the excess might be due to a photon background. None

of the known photon production mechanisms account for the excess of events seen.

Figure 11: Observed low energy electron-like excess in MiniBooNE.

MicroBooNE was designed to be able to distinguish between low-energy elec-

trons and photons and will be able to determine whether the excess is due to

electrons or photons. One advantage of MicroBooNE is its high tracking reso-

lution. This allows MicroBooNE to determine if a charged track started at the

neutrino vertex or if there is a gap indicating that a neutral particle produced the

charged one, like a photon pair producing into two electrons. Another advantage

is MicroBooNE’s ability to determine the energy deposited along the length of the

track. This allows MicroBooNE to determine if the energy deposited is consistent

with one electron or two that would be produced by a photon. The details of
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MicroBooNE’s design are given in Sec. 3.3.

The design of MicroBooNE also allows it to study interesting regions of neu-

trino cross sections. Because of the high tracking and calorimetry resolution, the

fine details of the neutrino interaction final states are visible [89]. This allows

MicroBooNE to study unknown properties of scattering off nucleons in a nucleus.

MicroBooNE’s high resolution also allows it to search for exotic physics like neu-

trinos from supernova explosions and proton decay events. Lastly, MicroBooNE

provides important research and development for future liquid argon TPC pro-

grams such as DUNE [90].

3.2 The Booster Neutrino Beam

The neutrino beam used by the MicroBooNE experiment is produced using proton

accelerators that were already in use at Fermilab. In fact, the proton beam that is

extracted to go to the proton target used by MicroBooNE to produce neutrinos,

is the same initial proton beam used by every other accelerator experiment at the

lab. The Booster Neutrino experiments, which include MicroBooNE, are the first

set of experiments on the proton accelerator line.

The first step in creating the Booster Neutrino Beamline (BNB) is to accelerate

negatively ionized hydrogen through a linear accelerator, or Linac. The Linac is

500 ft long and accelerates the hydrogen ions to 400 MeV using radio frequency

(RF) cavities. The hydrogen ions are then injected into the Booster accelerator.
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During injection, the ions pass through a foil that strips both electrons leaving

only the positive proton. The Booster [61] is a 474-meter-circumference, 15 Hz

synchrotron that accelerates the protons from 400 MeV to 8 GeV. The proton

beam leaving the Booster has a bunched structure. Each turn contains 81 proton

bunches that are 2 ns wide and 19 ns apart. At this stage, a fraction of the 8 GeV

protons are extracted to be sent to the Booster neutrino target. A kicker magnet

is used to extract all 81 proton bunches in a turn which we refer to as a spill. One

spill is 1.6 µs long and contains up to 5× 1012 protons.

The proton target is a beryllium cylinder 71.1 cm long and 0.51 cm in diame-

ter that is aligned with the proton beam. The interactions of the protons in the

beryllium produce secondary hadrons including charged and neutral pions, kaons,

and nucleons. The decay of the charged pions, charged and neutral kaons, and

muons from pion and kaon decays all contribute to the neutrino flux at the Micro-

BooNE detector. The charged pions and kaons are focused by a pulsed toroidal

electromagnet operating at a maximum frequency of 5 Hz which is the limiting

factor in the beam spill frequency. In neutrino mode, the magnet focuses positive

particles and defocuses negative particles. The positive pions and kaons then pass

through an air-filled decay pipe where they quickly decay predominantly into posi-

tive muons (anti-muons) and muon neutrinos. In anti-neutrino mode, which is not

used in this analysis, negative pions and kaons are focused which decay into nega-

tive muons and anti-neutrinos. The anti-muons and neutrinos next pass through
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a beam stop made of steel and concrete to filter out remaining protons, pions, and

kaons. Finally, the anti-muons and neutrinos pass through almost 500 meters of

dirt where the anti-muons stop and decay, and a (mostly) pure neutrino beam re-

mains. The predicted neutrino flux at MicroBooNE is shown in Fig. 12 per 1×106

protons on the target (POT). The neutrino flux prediction is based on Geant4 [91]

(describe in Sec. 4.1.3) based Monte Carlo simulation of protons interacting with

the beryllium target and the magnetic focusing horn. The production rate of the

secondary hadrons are determined from external proton-beryllium experimental

data [92].
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Figure 12: Predicted neutrino beam flux at MicroBooNE.

Neutrinos from the BNB can interact in the dirt upstream of the MicroBooNE

detector. Most of these interactions have no effect in the detector because the
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secondary particles do not travel far enough to pass through the dirt and enter

the detector. However, secondary neutrons that are produced in the dirt near

the detector can enter the detector at a significant rate. Figures 13 and 14 show

the position of all of simulated neutrino interactions in the dirt surrounding Mi-

croBooNE in gray and the subset of those interactions that produce a neutron

which enters the MicroBooNE TPC in red from two different angles. The details

of the simulation are described in Sec. 4. If one of these neutrons interacts in the

MicroBooNE detector and scatters a single proton, the signal could look indistin-

guishable from a neutral-current elastic neutrino interaction that occurred in the

detector.

Figure 13: Top view of all simulated neutrino interaction positions.
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Figure 14: Side view of all simulated neutrino interaction positions.

3.3 MicroBooNE LArTPC

The MicroBooNE LArTPC [22] acts as both a target for the neutrino beam and

a detector for the charged particles produced in the neutrino-argon interactions.

The MicroBooNE TPC is submerged in 170 tons of liquid argon, of which 87 tons

is contained inside the TPC. All of this is contained within a cylindrical cryostat.

Liquid argon is used as the detector material for several reasons. Like all

noble liquids, argon produces both ionization charge and scintillation light when

stimulated. The ionization electrons do not easily recombine, so they are able to

pass through the liquid argon to be collected. Additionally, argon is transparent

to its own scintillation light, making it detectable. Noble liquids also have good
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dielectric properties allowing them to withstand high voltages without breaking

down. Liquid argon is also relatively dense at 1.4 g/cm3, making it a good target

for neutrinos which interact extremely rarely. Lastly, argon is very abundant. It

makes up 1% of Earth’s atmosphere and is therefore an affordable option compared

to heaver noble elements.

The MicroBooNE time projection chamber (TPC) uses a uniform electric field

to guide the ionization electrons to an anode. The electrons are drifted horizon-

tally, perpendicular to the beam direction. To produce this uniform, horizontal

electric field, a 10 m×2.6 m cathode plane makes up one face of the TPC. This

face is vertical and parallel to the beam. A voltage of –70 kV is applied to the

anode plane which results in a 273 V/cm electric field across the 2.3 m TPC

width. There are three wire planes at the anode, perpendicular to the electron

drift direction and parallel to the cathode plane, that are strung with thousands

of wires spaced 3 mm apart. The three planes are all parallel to each other and

are also spaced 3 mm apart. The wires on the first plane have a small negative

voltage (–200 V), the middle plane has no voltage, and the last plane has a small

positive voltage (+440 V). When the electrons approach the first wire plane, they

induce a signal on the closest wires, and are then attracted to the next plane

because of its slightly less negative voltage. This is repeated at the second wire

plane, and the electrons are terminated at the third plane that we refer to as

the collection plane. The electronic signals from all 8256 wires are read out and
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saved. The wires on each plane are at different angles to allow for an accurate

2-dimensional reconstruction of the event in the detector. The collection plane

wires are vertical, and the wires on the two induction planes are at positive and

negative 60 degrees from the beam direction. The third dimension, perpendicular

to the anode planes, is reconstructed based on the time that the electrons arrived

at the wires. A cartoon representation of this process is shown in Fig. 15. The

wires are read out for 1.6 ms per event to ensure that the ionization electrons have

time to traverse the entire width of the detector. One 1.6 ms readout window is

referred to as a frame. In MicroBooNE the electron drift lifetime is greater than

6 ms, which is twice as long as what is required to perform analyses due to the

high purity of the liquid argon [93].

The expected number of neutrino interactions in MicroBooNE as a function

of protons on target (POT) is shown in Fig. 16. These were determined using

a Monte Carlo simulation described in Sec. 4.1. The plots shows the expected

number of events up to 1 × 1021 POT. MicroBooNE is approved to run for a

total of 1.3 × 1021 POT. Figure 16b shows the expected number of the subset of

neutral current interactions with NC elastic interactions in red. This line includes

interactions on both proton and neutrons, so we expect the number of NC elastic

proton events to be about half this. The integrated number of all expected NC

elastic neutrino-proton events from 1.3× 1021 POT is approximately 30,000.

The MicroBooNE detector is positioned just below the surface of the Earth,
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Figure 15: Representation of the operational principle of the MicroBooNE

LArTPC.

with no substantial overburden for shielding cosmic rays. The rate of cosmic

ray interactions in the detector is therefore large. Based on Fermilab’s elevation

(226 m above sea level) and MicroBooNE’s geometry within the detector hall, the

expected cosmic muon flux in MicroBooNE is 160 m−2s−1 based on MicroBooNE

simulation [7] using the CORSIKA Monte Carlo cosmic ray generator [94] (de-

scribed in Sec. 4.1.2). This gives a rate of about 9 muons per 1.6 ms readout

frame. We only expect one detectable neutrino interaction in the TPC for every

500 neutrino beam spills (about one every 10 s), which is much smaller than the
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Figure 16: Expected number of muon neutrino interactions in the MicroBooNE

TPC based on Monte Carlo simulation as a function of POT.

cosmic ray rate.

3.4 MicroBooNE light collection system and event trigger

Liquid argon also produces scintillation light. Tens of thousands of photons are

produced per MeV of deposited energy [22]. The scintillation photons have a

vacuum wavelength of 128 nm and do not re-interact with the argon assuming

there is not a significant amount of contaminants. The light collection system in

MicroBooNE consists of 32 photomultiplier tubes (PMTs) behind the TPC anode
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wire planes. Each PMT is shielded by an acrylic plate coated in tetraphenyl-

butadiene (TPB) that shifts the ultraviolet photons to the visible spectrum before

they interact with the PMT.

The light collection system in MicroBooNE is particularly useful for timing

information. Since each TPC event is read out over several milliseconds, it is

difficult to determine which events have activity coinciding with the neutrino

beam spill and which consist of only cosmic background activity based on the TPC

information alone. The PMTs have nanosecond timing resolution which allows us

to only save events that have optical activity during a time window surrounding

the 1.6 µs neutrino beam spill. Figure 17 shows the fractional increase in flashes

during the neutrino beam spill window.

MicroBooNE Preliminary

Figure 17: Fractional rate of flashes surrounding BNB spill window.
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An event is saved when there is a coincidence between the accelerator beam

signal and the PMT trigger implemented in the MicroBooNE data acquisition

(DAQ) software. The PMT trigger is based on a 23 µs window of PMT data

which include the time of the neutrino beam spill. To form a trigger, first pulses

are found on the thirty-two individual PMT signals using constant-fraction dis-

criminators that open a 100 ns discriminator window, and a new window cannot

be opened until the previous window has closed and there has been a 15 ns time

period without the signal going above the discriminator threshold. The discrim-

inator threshold in an individual PMT is 10 ADC counts which corresponds to

approximately 0.5 photoelectrons (PE) in the PMT. The maximum of the PMT

signal during the discriminator window is saved as the pulse height. Next, coin-

cident pulses across the different PMTs are found and combined. Pulse windows

that occur at the same time are combined and their pulse heights are summed.

If the sum of the coincident pulse heights across all 32 PMTs is above 20 ADC

counts, corresponding to approximately 6.5 PE, and the time of the coincident

pulses is within the neutrino beam-spill window, the event is saved.
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4 Simulation and reconstruction

In order to understand how different physics models would affect what we would

see in the detector, large and complex Monte Carlo simulations of the beam and

the detector are created. These simulations also allow us to develop and test

algorithms that reconstruct the underlying neutrino interaction based on what

particles are seen in the detector. The simulation and reconstruction algorithms

used by MicroBooNE are described in this section.

4.1 Monte Carlo simulation

The entire experimental process from the neutrino interactions in and around

the detector to electronic signal readout to particle identification is simulated in

software. To interface the different software packages needed to simulate each step,

a liquid argon software framework (LArSoft) was developed at Fermilab. Within

the LArSoft framework, the simulation is divided into three steps: generation,

propagation, and detector simulation. The output from the detector simulation

stage is designed to match the real data output from the detector as closely as

possible. Event reconstruction is also handled within LArSoft, and the same

algorithms can be applied to both real data and simulated data in an identical way.

This section describes all three stages of simulation and all of the reconstruction

stages, including TPC particle track and optical flash reconstruction.
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4.1.1 Cross section model

The initial neutrino interactions are simulated using the GENIE Neutrino Monte

Carlo Generator [95, 96]. Assuming a given neutrino flux, GENIE simulates the

interaction of the neutrino with the nucleons inside of the atoms in and around

the detector. It also simulates the interactions that occur while the nucleons and

pions from the initial neutrino-nucleon interaction traverse and exit the nucleus.

Within GENIE the nuclear models and neutrino-nucleon cross sections are config-

urable by the user. This analysis uses the GENIE version v2.12.2 default settings

with the addition of the empirical MEC cross section model [97]. The details

of the physics models for each of the four processes (the nuclear physics model,

the cross section model, the neutrino-induced hadron production model, and the

intranuclear hadron transport model) within GENIE as well as the simulated cos-

mic ray generation are described in this section. The uncertainties in the analysis

due to the models in this section are explored in Sec. 5.4.3.

First, the relativistic Fermi gas (RFG) nuclear model [98] is used for all pro-

cesses. The mass density for the argon nucleus is taken from review articles [99]

and the two-parameter Woods-Saxon density function is used [100]

ρ(r) = N0
1

1 + e(r−c)/z , (93)

where ρ is the density, r is the distance from the center of the nucleus, c describes

the size of the nucleus (approximately the radius where the density falls to half of
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the central value), and z describes the thickness of the surface. For argon, GENIE

uses c = 3.53 fm and z = 0.54 fm as default values. For elastic nucleon scattering

in the nucleus, Pauli blocking is applied.

Next, in the case of elastic (and quasi-elastic) neutrino-nucleon scattering, the

free-nucleon cross section is calculated. The neutrino-nucleon cross section and

form factor models used are described in Secs. 2.6 and 2.5. The methods used to

evaluate the Monte Carlo given a chosen cross section and form factor model are

described in section 6.1.1.

The hadrons produced in neutrino-nucleon interactions in a nucleus are mod-

eled separately from the nuclear model and the free-nucleon cross section model.

This is because the hadron production models do not match the measured neu-

trino cross sections. The hadron discrepancy is corrected for in GENIE using

the AGKY model [101] that was developed to account for the data seen in the

MINOS [102] neutrino scattering experiment and tuned using bubble chamber

experimental data.

Finally, the transport of the final state hadrons through the argon nucleus is

modeled. The hadrons produced in the neutrino-nucleon interactions can rescatter

as the exit the nucleus which changes the observable final state particle distribu-

tions. The intranuclear transport model is implemented by the GENIE subpackage

called INTRANUKE. INTRANUKE uses a cascade model in which the hadron

sees a nucleus of isolated nucleons. The interaction probability is calculated based
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on the free nucleon cross section and the nucleon density in the nucleus [96]

λ(E, r) =
1

σhN,totρ(r)
, (94)

where λ is the hadron interaction probability, E is the hadron energy, r is the

distance from the center of the nucleus, σhN,tot is the total free nucleon cross

section, and ρ is the density of the argon nucleus. The free nucleon cross section

is different for protons, neutrons, and pions. The density of the argon nucleus is

again determined by equation 93.

4.1.2 Event generation

The GENIE neutrino events are generated in LArSoft based on the neutrino flux

described in Sec. 3.2. The 1.6 µs long spill containing 5× 1012 protons on target

is simulated. In addition to neutrino events, cosmic ray events are also simu-

lated with the CORSIKA [94] cosmic ray generator. CORSIKA uses the FLUKA

interaction and transport simulator [103] to model hadronic interactions in the

atmosphere. To simulate real detector events both neutrino and cosmic ray inter-

actions can be generated in the same simulation. We can also combine real cosmic

data taken when the neutrino beam was turned off with simulated neutrino inter-

actions in the same events to closely model the real detector data.

In the standard simulation neutrino interactions are only generated within

the liquid argon filled cryostat, including interactions generated on the cryostat
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itself. Additional special samples are made to study how secondary particles from

neutrino interactions outside the cryostat contribute to our signal background.

One special sample that we generate is a large dirt sample in which neutrino

interactions that happen in the dirt and detector hall outside of the cryostat are

generated. The neutrino interactions are allowed to happen anywhere in fifty feet

of simulated dirt outside of the detector hall or anywhere in the detector hall

outside of the cryostat. These are known as dirt events.

All of the Monte Carlo samples that are generated and used in this analysis

are listed here.

1. Simulated neutrino interactions with simulated cosmic ray backgrounds.

This sample is used to develop the particle identification and event selection

algorithms.

2. Simulated neutrino interactions with real cosmic ray data backgrounds over-

laid. This sample very closely represents the actual detector conditions when

there is a neutrino interaction in MicroBooNE and is referred to as the over-

lay sample.

3. Simulated dirt interactions plus simulated cosmic interactions. This sample

contains all known backgrounds to neutrino events in the TPC and is referred

to as the dirt sample.
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4.1.3 Detector simulation

The final state particles from GENIE are passed to the Geant4 [91] software pack-

age to be propagated through the simulated geometry. The entire MicroBooNE

detector system, the detector hall, and fifty feet of dirt surrounding the detector

hall are all included in the Geant4 simulation. Figure 18 shows the entire sim-

ulated geometry including the surrounding dirt. This includes the electric field

and the detector electronics. The particles are stepped through the geometry and

undergo a possible physics process at each step with a given probability. The

particles are allowed to interact electromagnetically and hadronically with other

particles and the detector system or decay through one of the physically possible

decay modes. Additionally, the energy loss through ionization and scintillation

is simulated for all particles traversing the detector geometry. In the case of the

ionization of the liquid argon, the resulting electrons are propagated through the

electric field to the wire readouts. For the scintillation of the argon, a photon

library was generated for each position in the liquid cryostat. At each step a par-

ticle takes through the liquid argon, the resulting photons that would interact in

the PMTs are determined from a look-up table that was generated in a previous

full optical simulation. The full optical simulation of the scintillation photons

includes the Rayleigh scattering of the photons in the liquid argon as well as the

reflection and absorption of the photons at the surfaces in the detector.
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Figure 18: Rendering of the simulated MicroBooNE geometry.

After the simulated particles interact with the TPC or PMT system, the de-

tector response is simulated. The detector-simulation stage includes the electronic

responses of the sensitive detectors and reproduces the electronic signals from the

TPC and PMT systems. First, the PMT signal is digitized and the PMT software

trigger described in Sec. 3.4 is fully simulated. Events that do not pass the PMT

trigger are dropped. The TPC electronics, including the electronic noise on the

wires and unresponsive wires, are also included at this stage. At this point, the
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simulated data resembles the actual raw detector data as closely as possible.

4.2 Event reconstruction

Both the simulated waveforms and the raw detector waveforms need to be re-

constructed into the initial neutrino interactions. A series of reconstruction algo-

rithms for both PMT and TPC information exist in LArSoft. These algorithms

start by identifying peaks in the waveforms and combine these peaks in stages to

get to a 3-dimensional representation of the physics interaction.

4.2.1 Flash reconstruction

The optical flash reconstruction algorithm is applied identically to detector data

and the simulated data that is output from the detector simulation stage. The

first step is to find pulses on the electronic signals read out from each of the 32

PMTs. This is done using a peak finding algorithm on the digitized signal. The

time, amplitude, width, and area under the pulses are stored per pulse. Next,

the flash reconstruction algorithm looks for coincident pulses across PMTs. The

individual pulses are sorted by size, and all of the pulses that are within 8 µs

of the largest pulse are collected. If there are at least three pulses in that time

window and the sum of the pulse areas is at least 6 PE above the noise background,

it is considered a flash and saved. The peak time, width, position, and size are

reconstructed and saved along with information about the pulses in the individual
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PMTs that contributed to the flash. This process is repeated starting with the

next largest remaining pulse until there are none left. An individual pulse can

only contribute to one flash in an event.

4.2.2 TPC event reconstruction

Reconstructing TPC events involves more steps than the PMTs since there are

thousands of wires being read out for milliseconds resulting in approximately

30 MB of raw data per event. The reconstruction algorithms are again applied

identically to detector data and the simulated data from the detector simulation

stage. First, a noise-deconvolution filter is passed over each of the digitized wire

signals. Then, similar to the optical reconstruction, pulses, or hits, are found

on individual wires which are used as base building blocks for reconstructing 3D

particle tracks across wires and wire planes.

The 1D hit finding algorithm starts by walking along a wire signal until the

value is above a given threshold. The point where the signal goes above the

threshold is considered the start of the pulse, and the end of the pulse is defined

as the point where the signal goes back down below the threshold. Then, local

minima and maxima are found between the start and end of the pulse which are

used to determined where there are peaks within the pulse. Adjacent pulses are

merged if they are close enough in time. Once the pulse and the number of peaks

are established, the algorithm attempts to fit Gaussian peaks to the pulse. The
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hypothesis signal is composed of one Gaussian per peak from the previous step.

The mean and amplitude of each Gaussian is initially centered at the existing

peaks and is allowed to float. If the residuals of the fit are sufficiently small, each

Gaussian peak is saved as a 1D hit with an amplitude, width, and time given by

the fit. The hit finding is repeating along the length of the wire for each wire on

all three planes.

The 3D track finding algorithm is separated into two distinct parts. The first

part attempts to reconstruct and tag as many cosmic-induced tracks. The hits

associated with these tracks are then removed from the set of hits that are available

to reconstruct neutrino-induced tracks in the second part.

The algorithm used to preferentially reconstruct cosmic tracks is called Pan-

doraCosmic. It is implemented in the Pandora Software Development Kit [104]

used by MicroBooNE. In PandoraCosmic, 1D hits are first clustered in 2D per

wire plane. All of the reconstructed hits output by the hit finding algorithm on

a given wire plane are used as input. The hits are clustered into unambiguous,

continuous lines of hits. These initial clusters are meant to have a high purity,

meaning all of the hits in the cluster were induced by the same true particle. The

clusters in a 2D plane are then merged pairwise in an attempt to improve the

completeness of the cluster, meaning most of the hits on that wire plane induced

by a true particle are included in a single merged cluster. The 2D clusters are

then matched across the three wire planes. The 3D track reconstruction algorithm
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checks each plane for clusters which are likely to have come from the same true

particle. All possible combinations of 2D cluster matching are considered by the

algorithm. The most suitable set of cluster combinations are projected into 3D

and saved as reconstructed track objects.

Next, the reconstructed tracks from PandoraCosmic are passed to a cosmic

tagging stage. There are two algorithms used to identify cosmic-induced tracks.

The first is a geometry tagger that looks for tracks that are not fully contained in

the TPC during the event, and the second is a flash-matching algorithm that looks

for tracks that are inconsistent with any flashes in the beam spill window. Both

of the cosmic tagging algorithms try to remove as few neutrino-induced tracks as

possible and only remove tracks that are very likely cosmic-induced.

The geometry tagger starts by locating any TPC wire hits that are recon-

structed before or after the 1.6 millisecond readout frame. Any tracks that con-

tain these hits are tagged as cosmic. Any tracks whose reconstructed start or

end points are located within a given distance from the TPC boundary are also

tagged. If both of the start and end points are near a TPC boundary, the track is

given a cosmic score of 1. If only one of the start or end points is near a boundary,

the track is given a cosmic score of 0.5.

The flash-matching algorithm creates a hypothesis flash for each reconstructed

track based on its position, size, and energy deposited. It then compares the

hypothesis flash to each of the reconstructed flashes in the beam spill window. If
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a hypothesis flash is sufficiently incompatible with all true flashes in the window,

the track is tagged as cosmic. After the cosmic tagging, all reconstructed hits

associated with any of the tracks tagged as cosmic are removed from the set of

possible hits that are used to reconstruct neutrino-induced tracks. This is referred

to as the cosmic hit removal stage.

The remaining set of hits is used to reconstruct neutrino-induced tracks. First,

two dimensional clusters of hits are formed on each of the three wire planes using

the TrajCluster algorithm in LArSoft. TrajCluster creates line-like collections of

hits and adds new hits to the cluster based on the 2D trajectory of the current

set of hits. The algorithm stops when there are no additional hits along the

trajectory of the cluster and is followed by an additional stage that combines

clusters which start and end near each other. Next, 3D tracks are formed using the

projection matching algorithm (PMA) [105] which was developed for the ICARUS

experiment and implemented in LArSoft. PMA works by proposing nodes and

lines connecting the nodes in 3D, projecting the 3D lines onto the 2D planes, and

determining the most likely positions of the nodes in 3D based on the fit of the

2D projections to the existing 2D reconstructed clusters from the previous stage.

The algorithm starts with a two-node hypothesis and adds nodes to the 3D line

until a maximum number of nodes, which is based on the number of hits on the

wires, has been reached.

Calorimetric information is extracted when the reconstructed track objects are

64



created. The calorimetric information that we calculate and use is related to the

energy loss of the particle that created the track along its trajectory. At each point

along the track, the difference in the total charge between the current point and

the previous trajectory point is calculated. This gives us the change in charge

as a function of distance along the track, which we label dQ/dx. The dQ/dx

values along each track are found for each of the three wire planes. The dQ/dx

values can be converted to energy loss per unit distance, dE/dx, by multiplying

the dQ/dx by a measured conversion factor. This conversion factor depends on

the strength of the electric field and the gain of the readout electronics and is

determined empirically [106].
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5 Particle Identification and Event Selection

This section describes the process for selecting events in data and simulation

that we use to determine the strange axial form factor. First, proton tracks are

identified using a gradient-boosted decision tree model based on reconstructed

tracks features. Next, events are selected as neutral current elastic proton events

using a logistic regression model based on reconstructed properties of the whole

event including optical information. Comparisons of the selected NC elastic proton

events in the neutrino beam data to the expectation from neutrino simulation and

off-beam data are shown, and each of the remaining backgrounds is described in

detail.

5.1 Particle Identification

After the particle tracks are reconstructed, we use a predictive model to classify

proton tracks. The inputs to the model are the reconstructed physical variables,

and the output is the probability that the track is from a proton vs. some other

particle. There are many predictive models that we can use, each with advan-

tages and disadvantages. We chose gradient-boosted decision trees for a few main

reasons: they are easily interpretable, the inputs can be a mix of numeric and cat-

egorical variables, and boosted decision trees perform well at identifying a small

signal in a large background. Each tree is essentially a series of cuts based on
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physical variables which have been fine-tuned to increase the efficiency and purity

of the final selected sample.

5.1.1 Reconstructed track features

The reconstructed features that are used as input to the classifier are listed be-

low. Most of the features come directly from the track object, but some are

created for this classifier. Each of the features used to identify protons either

helps to separate neutrino-induced tracks from cosmic-induced tracks or to sep-

arate neutrino-induced proton tracks from other neutrino-induced particle types.

For colorimetric information we only use information from the collection plane.

Below is a list and description of the features designed to separate neutrino-

induced protons from other neutrino-induced particle types.

• Number of hits: This is the total number of hits on the collection plane

that are associated with a track. When used in combination with track

length and average energy deposited, this feature can be used to determine

the hit and energy density of the track.

• Straightness: This is the ratio of distance between reconstructed end

points (displacement) to reconstructed path length. It represents the amount

of scattering a track undergoes. The value is always between zero and one

with one being perfectly straight.
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• Cosmic score: This is the geometry tagging cosmic score from Sec. 4.2.2.

Tracks with a cosmic score of 1 have already been removed in the cosmic hit

removal stage. So, this value is either 0 (fully contained within the TPC) or

0.5 (entering or exiting the TPC).

• Length: This is the reconstructed 3D track length found by stepping along

the trajectory points.

• Start dE/dx: This is the total energy deposited on the collection plane in

the first six non-zero hits along the track divided by the distance between

hits to account for the angle with respect to the wire plane.

• End to start dE/dx ratio: This is the ratio of the total dE/dx from

the last six non-zero hits along the track on the collection plane to the total

dE/dx from the first six non-zero hits along the track on the collection plane.

• Truncated total dE/dx: This is the sum of the dE/dx of a truncated set

of hits on the collection plane associated with a track. The truncated set

includes all hits along the track with a dE/dx value within one standard

deviation of the median dE/dx value of all hits along the track on the

collection plane.

• Truncated average dE/dx: This is the truncated total dE/dx divided by

the number of hits in the truncated hit set associated with a track.
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Next is the list and description of the features designed to separate neutrino-

induced tracks from cosmic-induced tracks.

• Start and end positions: These are the reconstructed x, y, and z positions

of start and end of the track. Tracks that start closer to a TPC boundary

are more likely to be cosmic-induced.

• θ and φ: These are the reconstructed polar and azimuthal angles with

respect to the beam direction. Vertical tracks are much more likely to be

cosmic-induced, while forward-going tracks are more likely to be from the

neutrino beam.

Determining which end of a track is the beginning is difficult when a vertex

is not observable. Since we are particularly interested in neutral-current elastic

events with only a single proton, the direction of the track is a concern. A proton

will deposit much more energy at the end of its track than at the beginning which

can be used to determine the true direction. Since this correction is not currently

implemented within the reconstruction, we take all reconstructed tracks that have

a higher deposited energy at the beginning of the track than at the end of the

track and flip them. The deposited energy at the beginning (ending) of the track

is defined as the total dE/dx of the first (last) six non-zero hits along the track

on the collection plane. This includes changing the saved start positions, end

positions, θ, φ, start dE/dx, end dE/dx, and the end to start dE/dx ratio.
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5.1.2 Boosted decision trees

A decision tree can be thought of as a series of if/else statements that separate

a data set into two or more classes as illustrated in Fig. 19. At each node of the

tree, a split is chosen to maximize information gain until a set level of separation

is reached. At the terminus of the series of splits, called a leaf, a class is assigned.

The usual parameters that can be set when creating a decision tree are: the max-

imum depth of the tree (how many layers of nodes you will allow), the minimum

split size (how many data points do you require to keep splitting), and minimum

leaf size (how small does a leaf have to be before you stop).

A single tree can easily overfit a data set if it is at all complex, and its output is

just a class label. Gradient-boosting addresses both of these issues by combining

many weak classifiers into a strong one. Each weak classifier is built based on the

error of the previous one. For a given training set, whenever a sample is classified

incorrectly by a tree, that sample is given a higher importance when the next tree

is being created. Mathematically, each tree is training on the gradient of the loss

function. After all of the trees have been created, each tree is given a weight based

on its ability to classify the training set, and the output of the gradient-boosted

decision tree classifier is the probability that a sample is in a given class.

The gradient-boosted decision tree software package we use is XGBoost [107].

There are two types of classifiers we can use to separate protons from other tracks:
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Figure 19: Graphical example of a decision tree.

binary and multiclass. Both classifiers are trained on all types of reconstructed

tracks. A binary classifier classifies each track as either a proton or not a proton,

and a multiclass classifier classifies a track as one of many types including a proton.

We choose to use multiclass because the information about non-proton tracks

is useful for selecting neutral current events. The five classes that we train the

decision trees to classify are protons (both neutrino-induced and cosmic), neutrino-

induced muons, neutrino-induced pions, neutrino-induced electrons/photons, and
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all non-proton cosmics.

5.1.3 Training

Table 1: Breakdown by simulated particle type reconstructed tracks in the

gradient-boosted decision tree training set.

Protons Muons Pions EM Showers Non-proton Cosmics

No. of tracks 90,922 57,583 12,848 473,323 2,586,527

Fraction of set 0.028 0.018 0.004 0.147 0.803

Class weight 0.141 0.223 1.000 0.027 0.005

The gradient-boosted decision tree model was trained on 95,600 events with

both simulated GENIE neutrino interactions and simulated CORSIKA cosmic

interactions. Each track in every event was treated as a separate training sample.

Table 1 shows the number of each type of track that was used for training. There

are were a total of 3,221,203 simulated training tracks.

Because the training set has unbalanced classes (there are different numbers

of each particle type) each training sample is initially weighted so that the sum

of weights is equal to the size of the smallest class, in this case pions.

Ns =
Nn∑
i=1

wni ,

where Ns is the number of samples in the smallest class, Nn is the number samples

in the nth class, and wni is the weight given to the ith sample in that class. The
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same weight is used for each sample in a class, so the value of each positive weight

is wn = Ns

Nn
. Balancing the training set prevents the classifier from only learning

the most frequent classes. In our case, the classifier could achieve a high accuracy

by classifying everything as a cosmic in the unbalanced set because over 80% of

the tracks are cosmic-induced. One of our main goals is to have a proton ID

efficiency, and since protons only make up 3% of the training set, giving them a

higher weight makes it more important to the classifier that they are correctly

classified.

The parameters used for training were chosen to both maximize classification

accuracy and minimize overfitting to the training set. Overfitting occurs when

the performance on the training set is more accurate than the performance on an

external test set. The final training parameter settings are:

• Objective: multiclass: softprob

The learning objective. We want to classify five different track types and

get a probability of each class.

• Learning rate: 0.05

The change in the factor that each incorrectly classified sample gets re-

weighted by for the next tree. A smaller learning rate requires more trees

but prevents overfitting.

• Number of trees: 300
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The total number of trees in classifier.

• Maximum depth: 6

The maximum number of layers of nodes each tree can have.

• Maximum sampled features: 1.0

The fraction of total features that each tree can use to train. These are

randomly sampled.

• Maximum sampled observations: 0.75

The fraction of total samples that each tree can use to train. These are

randomly sampled.

5.1.4 Performance on a Test Set

The performance of the gradient-boosted decision tree classifier was tested on a

set of 3,200,000 reconstructed tracks from 96,200 events with simulated GENIE

neutrino interactions and simulated CORSIKA cosmic interactions. This set of

tracks was generated in the exact same way as the training set.

Figure 20 shows normalized histograms of the output proton score for every

track in the test set. The proton score ranges from zero to one with zero being the

least proton-like and one being the most. The blue histogram shows all simulated

neutrino-induced and cosmic induced proton tracks normalized so that the area

under the histogram is one. The orange histogram shows every other simulated
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Figure 20: Area-normalized histograms of decision tree proton identification scores

for simulated protons and other simulated proton tracks.

track type, also normalized so that the area under it is equal to one. Figure 21

shows the area-normalized histogram of proton scores for simulated proton tracks

that were produced in neutral current elastic proton events.

Figure 22 shows the overall classification performance of the gradient-boosted

decision tree model on the test set for each class. The x axis shows the true

particle type and the y axis shows the particle classes. The numbers in the boxes

are the fraction of the class that is made up of the given true particle type. The

fraction of true protons in the set of tracks classified as protons is 0.71, the fraction

of true muons in that set is 0.04, the fraction of true pions is 0.09, the fraction of
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Figure 21: Area-normalized histogram of decision tree proton identification scores

for simulated proton tracks from NC elastic proton interactions.

electromagnetic shower particles is 0.04, and the fraction of non-proton cosmics

in the proton-classified set is 0.05. A track is labelled as a given class type in

this plot if the particle’s decision tree score for that class is higher than its score

for any of the other four classes. The numbers in this plot were calculated using

equal numbers of each true particle type. In reality, there are far more non-proton

cosmic tracks than there are true protons, and the fraction of true protons in the

set classified as protons will be smaller.

Figure 23 shows the efficiency of the decision tree proton identification on

simulated neutrino-induced protons as a function of true proton kinetic energy.
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Figure 22: Heatmap showing the fraction of each class that is made up of a given

particle type.

The left plot (23a) shows the full simulated range of true proton kinetic energy, and

the right (23b) shows the range of interest to this analysis. In the interesting range

of kinetic energies, the proton identification efficiency stays relatively flat between

0.6 and 0.8 efficiency, with an average efficiency of 0.71. A track is considered

positively identified as a proton in these plots if its decision tree proton score is

higher than 0.5, meaning it is more likely than not to be a proton.

Figure 24 shows the efficiency of the decision tree proton identification on
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(a) The full simulated kinetic energy range.
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(b) The kinetic energy range used in this

analysis.

Figure 23: The efficiency of simulated neutrino-induced proton tracks correctly

classified as protons as a function of true proton kinetic energy.

simulated neutrino-induced protons as a function of true proton angle. The effi-

ciencies in these plots are calculated using only the simulated protons within the

kinetic energy range of interest (0.05 GeV ≤ Tp ≤ 0.5 GeV) used in Figure 23b.

The left plot (24a) shows the efficiency as a function of cos(θp), where θp is the

angle of the proton from the neutrino beam direction. At cos(θp) = 1 the proton

is parallel to the beam, at cos(θp) = −1 the proton is anti-parallel to the beam,

and at cos(θp) = 0 the proton is perpendicular to the beam. When the proton is

perpendicular to the beam it will not traverse more than one collection plane wire.

A large contribution to the decrease in efficiency at cos(θp) = 0 is the fact that

the decision tree classifier only uses calorimetry information from the collection

plane. The right plot(24b) shows the efficiency as a function of φp which is the
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(a) Efficiency as a function of the cosine of

the true proton angle from the beam direc-

tion.
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(b) Efficiency as a function of the true pro-

ton angle around the beam direction.

Figure 24: The efficiency of simulated neutrino-induced proton tracks correctly

classified as protons as a function of true proton angle.

angle around the neutrino beam direction. The flat efficiency is due to the fact

that the neutrino-induced proton angle should be isotropic in φp, and the angle

around the beam direction has no effect on the angle with respect to the angle

of the anode wires. Again, a track is considered positively identified as a proton

in these plots if its decision tree proton score is higher than 0.5. Figure 25 shows

the two-dimensional efficiency for true proton cos(θp) versus true proton kinetic

energy. The kinetic energy range of interest to this analysis goes up to 0.5 GeV

(the bottom half of the plot).
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Figure 25: Two-dimensional efficiency for true proton cos(θp) versus true proton

kinetic energy.

5.1.5 Performance on a Neutrino Data Subset

The gradient-boosted decision tree classifier was tested on a subset of MicroBooNE

neutrino data corresponding to 5 × 1019 POT (< 5% of the fill MicroBooNE

approved POT). The data set is taken entirely from MicroBooNE’s first year of

running (Run I). The results of the classifier on the neutrino data subset was

compared to the results on a combination of neutrino and cosmic simulation and

off-beam data. Each of the samples is scaled to 5× 1019 POT. The samples used

in these comparisons and the scaling factors are listed below.

1. Run I 5× 1019 POT neutrino data subset
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• Number of events: 171,603

• POT (tor860 wcut): 4.41e19

• Number of triggers (E1DCNT wcut): 9,779,224

• Normalization factor: 1

2. Run I off-beam data subset

• Number of events: 189,226

• Number of triggers (EXT): 14,579,406

• Normalization factor: 0.7063

3. Neutrino Monte Carlo with cosmic data overlay set

• Number of events: 200,160

• POT: 2.08e20

• Flux correction factor: 1.029

• Normalization factor: 0.2429

4. Neutrino dirt Monte Carlo with simulated cosmic data set

• Number of events: 105,214

• POT: 4.66e20

• POT normalization factor: 0.0947
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• Data driven normalization factor: 0.5 (described in Sec. 5.3.1)

• Normalization factor: 0.0474

The number of triggers listed is the total number of beam spill triggers issued by

the accelerator division and does not include the optical software trigger imple-

mented in MicroBooNE. This is how we scale the off-beam data to the neutrino

beam data. The number of events is the number of events left after the optical

pre-selection described in section 5.2.1. The off-beam data is a direct measurement

of the background to the neutrino beam data that is due to a cosmic interaction

occurring in-time with the beam. The neutrino Monte Carlo simulates neutrino

beam interactions that occur within the liquid argon cryostat, and the neutrino

dirt Monte Carlo simulates the background neutrino beam interactions that occur

outside of the cryostat.

Figure 26 shows the comparison of the decision tree proton score between the

subset of MicroBooNE neutrino data and the MicroBooNE simulation. The top

left plot is in linear scale and the top right plot is in log scale. The bottom plots

are the same, and they show the ratio between the on-beam neutrino data and

the combination of neutrino simulation and off-beam data.

In all of the figures in this section, the black points in the top plots show the

subset of neutrino data. The horizontal bars represent the bin width, and the

vertical bars represent the statistical uncertainty. The light gray filled histogram
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 26: Comparison of the decision tree proton scores between a subset of Mi-

croBooNE neutrino data and a combination of MicroBooNE neutrino simulation

and off-beam data.

includes tracks from the off-beam data. These tracks represent the background of

events where a cosmic interaction in the detector coincident with the beam time

window triggered the event, and there was no actual neutrino interaction. The

dark gray filled histograms include cosmic tracks that are in the background of

events with actual neutrino interactions that triggered the event. For simulated

neutrino interactions inside the detector, real data cosmic tracks are overlaid on

the simulated event, and for simulated neutrino interaction outside the detector,

the background cosmic tracks are from simulation. The color filled histograms in-

clude tracks from simulated neutrino interactions. The peach colored histograms
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include simulated neutrino-induced proton tracks, the dark green includes simu-

lated neutrino-induced pion tracks, the light green includes simulated neutrino-

induced muon tracks, and the purple includes simulated neutrino-induced elec-

tromagnetic shower tracks. The fraction of proton tracks in the right plots (the

tracks classified as protons) is much larger than in the left plots (all tracks), which

is the goal of the classifier. The bottom plots in all of the figures show the ratio

of the neutrino data points to the sum of all of the stacked, filled histograms. A

ratio of one means perfect data to simulation agreement.

Figures 27-39 show comparisons between the subset of MicroBooNE neutrino

data and the MicroBooNE simulation for each of the input variables being used

in the decision tree classifier. A description of each of these reconstructed track

features is given in Sec. 5.1.1. The left plots show the histogram of the given

variable for all tracks being input to the classifier, and the right plots show the

histograms of the given variable for the tracks that were classified as protons. A

track is considered classified as a proton if the decision tree proton score is greater

than 0.5 for that track.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 27: Breakdown of the different particle track types in neutrino data and

simulation as a function of the number of hits on the collection plane.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 28: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track straightness.
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(a) All reconstructed tracks.

0 20 40 60 80 100
Length [cm]

0

500

1000

1500

2000

2500

3000

3500

4000

N
o.

 o
f t

ra
ck

s 
in

 5
e1

9 
PO

T

Passing

5e19 BNB data
Off-beam data
Overlaid + simulated cosmics
BNB MC protons
MC pions
MC muons
MC photons and e±

0 20 40 60 80 100
Length [cm]

0.50

0.75

1.00

1.25

1.50

R
at

io

(b) All reconstructed tracks that are clas-

sified as protons.

Figure 29: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track length.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 30: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track start dE/dx.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 31: Breakdown of the different particle track types in neutrino data and

simulation as a function of the end to start dE/dx ratio.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 32: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track truncated total dE/dx.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 33: Breakdown of the different particle track types in neutrino data and

simulation as a function of the truncated average dE/dx.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 34: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track starting y position.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 35: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track ending y position.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 36: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track starting z position.
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(a) All reconstructed tracks.

200 400 600 800 1000
Track End Z Position

0

200

400

600

800

1000

1200

1400

N
o.

 o
f t

ra
ck

s 
in

 5
e1

9 
PO

T

Passing

5e19 BNB data
Off-beam data
Overlaid + simulated cosmics
BNB MC protons

MC pions
MC muons
MC photons and e±

200 400 600 800 1000
Track End Z Position

0.50

0.75

1.00

1.25

1.50

R
at

io

(b) All reconstructed tracks that are clas-

sified as protons.

Figure 37: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track ending z position.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 38: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track cos(θ) angle.
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(a) All reconstructed tracks.
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(b) All reconstructed tracks that are clas-

sified as protons.

Figure 39: Breakdown of the different particle track types in neutrino data and

simulation as a function of the track φ angle.

91



5.2 Event Selection

The neutral current elastic proton event selection consists of some simple pre-

selection cuts to remove events that are very unlike the signal and a final event

selection using a logistic regression model based on event details. The proton

identification in the previous section was designed to identify any proton induced

track from any type of event. To select protons from NC elastic neutrino-proton

interactions, we use optical timing and position information, information about

activity surrounding the proton candidate, and information about unrelated tracks

in the event that may be neutrino induced.

5.2.1 Optical Pre-selection

A common optical pre-filter is run over MicroBooNE data before any of the events

are reconstructed. The common optical filter requires both that there is a suffi-

cient optical flash within a 2 µs window starting at the beginning of the 1.6 µs

beam window and that there is no such flash in a 2 µs time window immediately

preceding the beam window. This 2 µs window before the beam is called the veto

window.

First, each of the 2 µs windows is sliced into 339 bins that are 94 ns wide. Then

the total number of photoelectrons (PE) of any optical pulses that occur within

a given bin are added to that time bin. If any of the time bins within the larger

2 µs window add up to more than 20 PE, this is considered a sufficient flash to the
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optical filter. If any one of these flashes occur within the beam window and none

of the flashes occurs within the veto window the event is accepted. Otherwise, it

is rejected.

Figure 40 shows the efficiency of the optical pre-selection on simulated NC

elastic proton events as a function of true negative four-momentum squared. The

overall efficiency in the range between Q2 = 0.1 GeV2 and Q2 = 1.0 GeV2 is 81%.
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Figure 40: Efficiency of optical pre-selection on simulated NC elastic proton

events.

5.2.2 NC Elastic Pre-selection

Before making a final neutral current elastic event selection, some simple cuts are

made to reject a large number of background events that are very unlikely to be
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Table 2: Number of remaining events in 5× 1019 POT data set after each of the

NC elastic pre-selection cuts.

Cut Simulation Off-Beam Data Sim.+Off-Beam Neutrino Data

Beam Flash 33743 71208 104951 108064

Containment 33742 71207 104949 108058

Length 33523 70426 103949 107123

Proton Score 16805 23491 40296 41867

NC elastic interactions. The result of each of these pre-cuts on the scaled data

and simulation samples described in Sec. 5.1.5 are shown in Tab. 2. The first

column shows the total number of simulated neutrino events that pass each cut

scaled to 5×1019 POT, and the second column shows the total number of off-beam

data events that pass each cut scaled to 5 × 1019 POT. The third column is the

sum of the first two columns which is the expected number of on-beam events in

5× 1019 POT. The last column shows the total number of on-beam events in the

5× 1019 POT data after each cut. If the simulation were a perfect representation

of reality, the last two columns would be the same. At each cut in the pre-selection

the measured number of events in the on-beam neutrino data is within 5% of the

expected number of events from simulation and off-beam data.

The first pre-selection requirement is that there is at least one reconstructed

optical flash inside the 1.6 µs neutrino beam time window. This cut is to reduce

94



the amount of cosmic background. The next two pre-selection requirements are

that there is at least one reconstructed track that is at least 2.5 cm long and fully

contained within a fiducial TPC volume. The fiducial volume is defined as being

at least 10 cm away from either y boundary of the TPC active volume and at

least 5 cm away from any of the x and z boundaries of the TPC active volume.

The containment and length requirements don’t reduce the number of events by

a lot, but they reduce the number of tracks within each event that are considered

when trying to select NC elastic proton tracks. The last pre-selection requirement

is that there is at least one track in the event that has a proton score from the

gradient-boosted decision tree classifier greater than 0.5. To summarize all of the

cuts, the set of events after the pre-selection had an interaction in-time with the

neutrino beam and at least one track that is likely to be a proton contained in the

TPC fiducial volume. The efficiency and purity of simulated NC elastic proton

events after each of the cuts is shown in Tab. 3. Figure 41 shows the efficiency

of the pre-selection on simulated neutrino events as a function of true negative

four-momentum squared.

Figure 42 shows the reconstructed track lengths of the longest remaining pro-

ton candidate track in the events remaining after the preselection. The black

points in the top plot include the events in the 5 × 1019 POT neutrino data set

with statistical uncertainty only. The gray filled histogram includes the off-beam

data events scaled to 5 × 1019 POT, and the color filled histograms include the

95



Table 3: Efficiency and purity of simulated NC elastic proton events after each of

the NC elastic pre-selection cuts.

Cut Efficiency Relative Efficiency Purity

Optical Pre-Filter 0.81 0.81 0.004

Beam Flash 0.78 0.97 0.005

Reconstruction 0.62 0.79 0.005

Containment 0.53 0.86 0.005

Length 0.46 0.87 0.005

Proton Score 0.39 0.84 0.009

simulated neutrino events scaled to 5× 1019 POT. The simulated NC elastic pro-

ton events in the TPC are in peach, the simulated charged current events in the

TPC are in blue, the simulated neutral current background TPC events are in

purple, the simulated events in which the neutrino interaction occurred in the

liquid argon but outside of the TPC are in green, and the simulated events in

which the neutrino interaction occurred outside of the liquid argon cryostat are

in orange. Each of the remaining background types is described in more detail in

section 5.3.
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Figure 41: Efficiency of simulated NC elastic proton events as a function of true

Q2 after the pre-selection cuts.

5.2.3 Selection Variables

To select NC elastic proton interactions we look for events with a track that is

very likely to be a proton, the track is near the reconstructed beam flash, there

are no other tracks near the proton candidate track, there are no tracks likely to

be from charged current interactions near the reconstructed beam flash, and the

proton candidate track is in the direction of the neutrino beam. The following

seven variables are used to select these events,

1. the decision tree proton ID score,

2. the shortest distance between either reconstructed endpoint of the candidate

track and the next closest endpoint of a different reconstructed track,
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Figure 42: Reconstructed track length of the longest proton candidate track in

the events after all pre-selection cuts.

3. the distance from the center of the reconstructed track to the center of the

reconstructed beam flash in the z direction,

4. the distance from the center of the reconstructed track to the center of the

reconstructed beam flash in the y direction,

5. whether or not the reconstructed track is in the neutrino beam direction,

6. the distance between any reconstructed tracks with a decision tree muon ID

score greater than 0.5 and the reconstructed beam flash in the z direction,

98



7. the distance between any reconstructed tracks with a decision tree pion ID

score greater than 0.5 and the reconstructed beam flash in the z direction.

The center of the reconstructed track is defined as the halfway point between

the reconstructed track endpoints in the dimension of interest. The center of

the reconstructed flash is the PE-weighted reconstructed center of the flash. The

beam flash is defined as a flash whose peak amplitude occurs within the neutrino

beam time window. A track is defined as in the beam direction if its reconstructed

endpoint is downstream (higher in z) than its reconstructed start point. If there

are no tracks in the event identified as a muon (in item 6.) or a pion (in item 7.),

the value is set to 999 cm, which is close to the maximum distance a track can be

from a flash in the TPC. A comparison of each of these variables between data

and simulation after the pre-selection is shown in Figs. 43-49.
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Figure 43: Decision tree proton score after the pre-selection cuts.
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Figure 44: Distance to the next closest track after the pre-selection cuts.
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Figure 45: Distance to the beam flash in z after the pre-selection cuts.
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Figure 46: Distance to the beam flash in y after the pre-selection cuts.
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Figure 47: Whether or not the track is forward going after the pre-selection cuts.
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Figure 48: Distance between muon track and flash after the pre-selection cuts.

102



0 200 400 600 800 1000
BNB pion/flash distance in z [cm]

0

5000

10000

15000

20000

25000

30000

N
o.

 o
f t

ra
ck

s 
in

 5
e1

9 
PO

T

5e19 BNB data
MC NC Elastic Protons
MC CC TPC Background
MC NC TPC Background
MC Cryostat Background
Dirt Background
Off-Beam Data

0 200 400 600 800 1000
BNB pion/flash distance in z [cm]

0.5

1.0

1.5

D
at

a/
Si

m

Figure 49: Distance between pion track and flash after the pre-selection cuts.
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5.2.4 Logistic Regression

To determine which events are NC elastic like based on these seven variables, we

use them as input to a logistic regression model [108]. The difference between lo-

gistic regression and linear regression models is that a binary (or logistic) outcome

is being modeled. Otherwise, the methods used to fit logistic and linear regression

models follow the same principles. In our logistic regression a multi-dimensional

sigmoid function is fit to the binary signal and background data. The data that

the model is fit to binary (either background, 0, or signal, 1), but the model itself

is continuous between zero and one. The output is a score that can be used to

determine how signal-like a data point is.

S(g(x)) =
eg(x)

1 + eg(x)
,

where g(x) is a linear combination of the selection variables, x,

g(x) = w0 + w1x1 + w2x2 + ...+ w7x7 .

Here x1 is item 1 from the list in Sec. 5.2.3 (the proton ID score), x2 is item

2 (the distance to the next closest track), etc. The set of weights, w0, ..., w7

is determined from a fit to the data. We determined these weights using the

StatsModels module [109] in Python to fit the model to a subset of the simulated

neutrino events described in Sec. 5.1.4 along with a set of simulated cosmic events

that produce an optical flash in-time with the neutrino beam. The simulated set
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of in-time cosmics should match the off-beam data in a perfect simulation. For the

fit, 998 simulated NC elastic proton events, 2000 simulated background neutrino

events, and 1806 simulated background in-time cosmic events were used. The final

set of weights used are
w0 = −5.943956,

w1 = 5.388985,

w2 = 0.021189,

w3 = −0.016710,

w4 = −0.017510,

w5 = 0.592240,

w6 = 0.001084,

w7 = 0.000989.

(95)

The χ2/DoF of the fit was 8161/4804 = 1.70. The degrees of freedom in the fit

are the 4804 simulated events used.

Figure 50 shows the output logistic regression score on the simulated neutrino

events plus the off-beam data compared to the output on the 5×1019 POT neutrino

beam data. Again, the black points in the top plot include the 5 × 1019 POT

subset of neutrino data with statistical uncertainty only, the gray filled histogram

includes off-beam data scaled to 5 × 1019 POT, and the color filled histograms

include the simulated neutrino interactions overlaid with cosmic data backgrounds

scaled to 5× 1019 POT. The peach color is NC elastic proton events in the TPC,
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Figure 50: Logistic regression NC elastic events selection score.

blue is charged current background events in the TPC, purple is neutral current

background events in the TPC, green is background from neutrino interactions

in the liquid argon outside of the TPC, and yellow is background from neutrino

interactions outside of the liquid argon cryostat. The higher the logistic regression

score, the more likely the event is NC elastic proton. The bottom plot shows the

ratio of the 5×1019 POT neutrino beam data to the sum of the simulated neutrino

events and off-beam data.

Figure 51 shows the efficiency and purity of the NC elastic signal for cutting

on given logistic regression scores. Figure 51a shows both the efficiency curve and
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the purity curve of the NC elastic event selection on the simulated neutrino events

and off-beam data as a function of the logistic regression score cut. This cut is

imposed after the pre-selection cuts, which is why the efficiency only goes as high

as 0.41. Figure 51b shows the purity on the y-axis as a function of efficiency on

the x-axis for different logistic regression score cuts. Selected score cut values are

labelled along the curve.
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(a) Efficiency and purity curves overlaid.
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Figure 51: Efficiency and purity of the NC elastic proton event selection given

several different cut values on the logistic regression score.

In this analysis we choose a logistic regression score cut of 0.9 to minimize the

backgrounds as much as reasonably possible. The gives us an overall NC elastic

proton event selection efficiency of 0.11 and a purity of 0.30 based on simulated

neutrino events and off-beam data. The efficiency of this selection on simulated

NC elastic proton events is shown in Fig. 52 as a function of true Q2. The overall

shape of the NC elastic proton selection efficiency remains relatively flat across
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the Q2 range of interest.
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Figure 52: Efficiency of the NC elastic proton event selection on simulated NC

elastic proton events as a function of true Q2.

5.2.5 Comparison of Event Selection on Neutrino Beam Data to Ex-

pectation from Simulation and Off-Beam Data

Figures 54-58 show comparisons between the final selected events in the neutrino

beam data and the neutrino simulation and off-beam data. The full Run I and

simulated data sets are used in these comparisons. Each of the data sets is scaled

to the size of the Run I data (1.6 × 1020 POT). The data sets and the scaling

factors are listed below.

1. Run I 1.6× 1020 POT neutrino data set

• Number of events: 621,231
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• POT: 1.6× 1020

• Number of triggers: 35,913,783

• Normalization factor: 1

2. Run I off-beam data subset

• Number of events: 941,584

• Number of triggers: 73,761,274

• Normalization factor: 0.4869

3. Neutrino Monte Carlo with cosmic data overlay set

• Number of events: 750,629

• POT: 9.37× 1020

• Flux correction factor: 1.029

• Normalization factor: 0.1676

4. Neutrino dirt Monte Carlo with simulated cosmic data set

• Number of events: 105,214

• POT: 3.73× 1020

• POT normalization factor: 0.4326

• Data driven normalization factor: 0.5 (described in Sec. 5.3.1)
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• Normalization factor: 0.2163

Figure 53 shows the comparison between neutrino beam data and the expec-

tation from simulation and off-beam data as a function of reconstructed negative

four-momentum transfer squared, which is calculated from the proton kinetic en-

ergy, Tp, as derived in Sec. 1.3,

Q2
p = 2TpMp,

where Mp is the proton mass. This is the comparison that will be used to extract

the strange axial form factor parameters (described in Sec. 6). In this and all of

the following figures in this section, the black points in the top plot include the

neutrino beam data with statistical uncertainty only, the gray filled histogram

includes off-beam data, and the color filled histograms include simulated neutrino

events with overlaid cosmic data backgrounds. The peach are NC elastic pro-

ton events, the blue are CC background events in the TPC, the purple are NC

background events in the TPC, the green are background events from neutrino

interactions in the liquid argon outside of the TPC, and the yellow are back-

grounds from neutrino interactions outside of the liquid argon cryostat. Each of

these backgrounds is described in more detail in Sec. 5.3. The bottom plot shows

the ratio of the selected neutrino beam data events to the combination of selected

simulated neutrino events and selected off-beam data events. If the simulation

and data were exactly the same, the ratio would be equal to one.
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Figure 53: Selected NC elastic proton events as a function of reconstructed Q2
p.

Figures 54 and 55 show the comparison between neutrino beam data and

the expectation from neutrino simulation and off-beam data as a function of the

reconstructed proton angle. Figure 54 shows this as a function of the cosine of

the proton polar angle from the beam direction, cos(θp), and Fig. 55 shows it as

a function of the proton azimuthal angle around the beam direction, φp. The

cos(θp) distribution of the off-beam data appears to have a peak near 0.4 and

another peak near 1.0. These peaks in the off-beam data are a combination of

angle dependence of the cosmic ray flux and the reconstruction efficiency of the

MicroBooNE TPC. The simulated neutrino-induced tracks tend to be more in the
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direction of the neutrino beam. The φp distribution has clear peaks in the off-beam

data at φp = ±π/2. The −π/2 peak corresponds to tracks that are reconstructed

as vertically down-going in the TPC and the +π/2 peak corresponds to tracks

that are reconstructed as vertically up-going. Both peaks are due to down-going

cosmic tracks, but some of these tracks are mis-reconstructed as going up through

the detector. The simulated neutrino-induced tracks are relatively isotropic in φ.
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Figure 54: Selected NC elastic proton events as a function of reconstructed cos(θp).

Figures 56, 57, and 58 show the comparison between neutrino beam data and

the expectation from neutrino simulation and off-beam data as a function of the
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Figure 55: Selected NC elastic proton events as a function of reconstructed φp.

start points of the reconstructed tracks in x, y, and z, respectively. In the reference

frame used by MicroBooNE, the x dimension is the dimension across the width

of the detector with the anode near x = 0 cm and the cathode near x = 250 cm,

the y dimension is the vertical dimension across the height of the detector with

the bottom of the TPC near y = −100 cm and the top near y = +100 cm, and

the z dimension is the dimension in the beam direction across the length of the

detector with the upstream (front) end of the detector near z = 0 cm and the

downstream (back) end of the detector near z = 1000 cm.

In Fig. 56, the higher number of selected events at low x is due to the greater
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charge and light collection efficiency for particles that are near the anode since

both the TPC readout wires and the PMTs are on the anode side of the detector

at x = 0.
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Figure 56: Selected NC elastic proton events as a function of reconstructed x

position.

In Fig 57, the increase in the number of selected off-beam tracks from the

bottom (y = −100 cm) to the top (y = +100 cm) of the TPC is due to the fact

that most cosmic tracks enter through the top of the detector, and not all tracks

make it all of the way through. The greater number of selected simulated neutrino
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events near the center of the detector (y = 0) might be due to the fact that tracks

at an angle are more likely to fail the fiducial TPC containment cut when they are

closer to the edges of the detector. This may be more visible in the y dimension

than the x because there are no other competing effects.
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Figure 57: Selected NC elastic proton events as a function of reconstructed y

position.

In Fig. 58, the selected off-beam and the selected neutrino events are fairly

uniform in the z dimension. The small decrease in selected events near the very

back of the TPC (z ≈ 1000 cm) is due to the fact that tracks are less likely to be

contained in the TPC if they are produced so close to the back edge.
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Figure 58: Selected NC elastic proton events as a function of reconstructed z

position.

5.3 Remaining Backgrounds

The remaining backgrounds after the final neutral current elastic neutrino-proton

event selection include events in which a neutrino interaction occurred outside of

the liquid argon cryostat, events in which a neutrino interaction occurred in the

liquid argon but outside of the active TPC volume, events in which a neutrino

interaction that was not an NC elastic neutrino-proton interaction occurred within

the active volume, and events in which a cosmic interaction occurred at the same

time as the neutrino beam spill, and there was no neutrino interaction. In all
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of these cases except the last one, tracks from the neutrino interaction produced

scintillation light within the cryostat that triggered the event readout, but it could

have been either a track from the neutrino event or cosmic-induced track that was

tagged as the proton candidate.

5.3.1 Beam Induced Dirt Background

The dirt background, described in Sec. 3.2, consists of any selected events that are

due to a neutrino interaction outside of the liquid argon cryostat. The majority

of this background is caused by neutrons entering the detector and scattering

protons. Sometimes the neutron is directly from the neutrino interaction in the

dirt, and other times secondary particles from the neutrino interaction enter the

cryostat and cause a flash, but an unrelated proton from a cosmic neutron happens

to be spatially nearby. Figure 59 shows the total dirt background that passes

the NC elastic proton event selection as a function of reconstructed Q2. The

filled yellow histogram includes all remaining dirt events, and the pale yellow box

shows the statistical uncertainty on the number of events. An overall data-driven

normalization has been applied and is described below. The hatched histograms

overlaying the yellow filled histogram show what type of particle was selected as

the NC elastic proton candidate. The blue hatched histograms include the events

in which a proton was selected with hatching diagonal for cosmic protons and

vertical for neutrino beam induced protons. The red hatched histograms include
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the events in which a track from an electromagnetic shower was selected with

diagonal hatching for cosmic showers and vertical hatching for neutrino beam

induced showers. The purple hatched histograms include all other types of tracks.
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Figure 59: Remaining background dirt events after NC elastic proton event selec-

tion as a function of Q2.

The dirt background is difficult to simulated for several reasons. First, the

neutrino interactions occur outside of the detector in the surrounding infrastruc-

ture which is much more difficult to model perfectly than uniformly dense liquid

argon. The composition and density distribution of the dirt outside of the detector

hall is not known perfectly and changes throughout the year due to rain, freezing,

and other weather. The neutrino interactions can also occur in the walls of the

detector building, the electronics racks, the cryogenic plumbing, or anything else
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that exists near the detector.

Additionally, the dirt sample is difficult to simulate because it depends on

modeling the cosmic neutron flux, which is not well known at the energies that we

are interested in [110]. The different cosmic ray flux models that were tested in

MicroBooNE studies [7] vary by almost an order of magnitude in their predictions

of the proton flux at proton kinetic energies below 100 MeV, shown in Fig. 60.

The gray line in the figure represents the model used in MicroBooNE simula-

tion, described in Sec. 4.1.2, which is the most consistent with measurements in

Ref. [110].

Figure 60: Comparison of the cosmic proton flux predictions from three different

generator models in MicroBooNE [7].

Because of the difficulty on modeling the dirt background, we perform a data-

driven normalization of the dirt sample. A similar scaling was performed in the
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MiniBooNE neutral current elastic cross section measurement [5] using different

observable variables. In MicroBooNE, the contribution from dirt events can be

seen most clearly in the z distribution of reconstructed flashes since most of the

dirt interactions that produce a signal in the detector occur upstream as shown

in Figure 61. Figure 61a shows the view from the side of the detector hall with

the neutrino beam going from left to right. The inner box shows the dimensions

of the MicroBooNE TPC and the outer box shows the dimensions of the outer

walls of the building. Figure 61b shows the top view of the detector with the

beam again going from left to right. The inner box shows the dimension of the

MicroBooNE TPC and the outer circle shows the dimensions of the outer wall

of the building. Figure 62 shows a comparison of this distribution between the

5 × 1019 POT subset of neutrino-beam data and the expectation from neutrino

simulation and off-beam data without the contribution from dirt interactions.

There is a clear excess in neutrino beam data events in the upstream end of

the detector (z < 300 cm). Figure 63a shows the difference between the two

distribution in Fig. 62, and Fig 63b shows the z distribution of reconstructed

flashes from simulated dirt events. The shapes are similar, but the scale is not.

We use these two distributions to extract an overall normalization factor for the

dirt simulation.

The normalization factor is determined by performing a weighted-least-squares

regression on the z distribution of the reconstructed flashes. The value that we
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Figure 61: Position of simulated neutrino interactions which produce a neutron

that enters and interacts in the MicroBooNE TPC.

minimized is

WLS =

Nbins∑
i=0

wir
2
i ,

where the sum is over the bins in the flash position distribution, wi is the variance

of the excess of measured events over the expectation in bin i, and

ri = x
(data exc.)
i − a · y(dirt)

i .

Here xi is the number of the data excess events in bin i, yi is the number of simu-

lated dirt events in bin i, and a is the dirt normalization factor that we are trying

to determine. Using the Python SciPy [111] Optimize library, we found that WLS

is minimized at a = 0.5. The estimated uncertainty on this normalization factor

is 50%, which covers the statistical variations in the first peak in the z flash dis-
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Figure 62: Comparison between neutrino beam data and the expectation from

simulation and off-beam data of the z distribution of reconstructed flashes without

the contribution from neutrino interactions in the dirt.

tribution. Figure 64 shows the distribution of the z position of the reconstructed

flashes in the neutrino beam data compared to the expectation from the neutrino

simulation and off-beam data including the normalized simulated dirt events. The

brown bars show the 50% uncertainty on the dirt normalization factor.

With the normalization, the total number of background dirt events remaining

after the NC elastic proton event selection (scaled to 1.6× 1020 POT) is

Ndirt = 34± 6 (stat.)± 17 (syst.) .
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Figure 63: Distribution of the z position of reconstructed flashes in MicroBooNE.

The normalized distribution of remaining events is the one shown in Fig. 59. The

effect on the overall systematic uncertainty on the NC elastic proton selection due

to the uncertainty on the number of dirt events is shown in Sec. 5.4.3.

5.3.2 Beam Induced TPC and Cryostat Background

The beam induced TPC and cryostat background includes all background events in

which there was a neutrino beam interaction inside the liquid argon cryostat. This

background can be separated into cryostat background events, charged current

TPC background events, and neutral current TPC background events.

Like the dirt background, the neutrino interactions in the cryostat background
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Figure 64: Comparison between neutrino beam data and the expectation from

simulation and off-beam data of the z distribution of reconstructed flashes with

the contribution from neutrino interactions in the dirt.

occur outside of the active TPC volume, but they do occur inside the liquid argon

cryostat (or in the wall of cryostat vessel itself), making them easier to simulate

for the reasons described in Sec. 5.3.1. Like the other two background categories

in this section, the cryostat background is included in the simulated neutrino

data set with an overlaid cosmic data background. Figure 65 shows the remaining

cryostat background events in the final NC elastic event selection as a function

of reconstructed Q2. The green filled histogram includes all remaining cryostat
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background events, and the pale green box represents the statistical uncertainty

on the number of events. The hatched histograms overlaid on the green filled

histogram show what type of particle was selected as the NC elastic proton can-

didate. The purple diagonally hatched histogram includes events in which an

overlaid cosmic track was selected, the blue hatched histogram includes events in

which a neutrino-induced proton was selected, the red hatched histogram includes

events in which a track from a neutrino-induced electromagnetic shower was se-

lected, and the purple vertically hatched histogram includes events in which any

other neutrino-induced track was selected. Again, the majority of the tracks se-

lected as the proton candidate were actual protons. Cosmic tracks are the next

most common track selected as the proton candidate in these events. Since real

cosmic data are used as the background, we don’t know how many of the selected

cosmic tracks were actual protons. The other background tracks are negligible.

The number of remaining cryostat background events after the NC elastic proton

event selection (scaled to 1.6× 1020 POT) is Ncryo = 78± 10.

The CC TPC background includes all events in which a charged current neu-

trino interaction occurred in the active TPC volume. Figure 66 shows the re-

maining CC TPC background after the NC elastic proton selection as a function

of reconstructed Q2. The blue filled histogram includes all remaining CC TPC

events, and the pale blue box represents the statistical uncertainty on the num-

ber of events. The type of particle selected as the proton candidate is shown
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Figure 65: Remaining background cryostat events after NC elastic proton event

selection as a function of Q2.

in the overlaid hatched histograms with the same color and hatching scheme as

in Fig. 65. A large majority of the tracks selected as the proton candidate are

actual neutrino-induced protons. These background proton tracks can be from a

charged current interaction in which a neutron is ejected from the nucleus during

the initial interaction which later scatters a proton some distance from the inter-

action vertex. If the muon from the charged current interaction is not correctly

identified as a neutrino-induced muon by the gradient-boosted decision tree clas-

sifier the proton can be tagged as NC elastic. The proton tracks could also be

primary particles form a charged current interaction, but the muon from the in-

teraction is either not reconstructed or reconstructed poorly enough that it is not

associated with the same vertex as the proton and also not identified correctly by
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the decision tree classifier. The next most common tracks selected as the proton

candidate are cosmic overlay tracks. Again, we don’t know how many of these

tracks are actual protons. In these events, the charged current interaction was

either not reconstructed or poorly reconstructed, and a nearby unrelated cosmic

track was selected. The number of remaining CC TPC background events after

the NC elastic proton event selection (scaled to 1.6× 1020 POT) is NCC = 38± 8.
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Figure 66: Remaining CC TPC events background after NC elastic proton event

selection as a function of Q2.

The NC TPC background includes all events in which a neutral current neu-

trino interaction occurred in the active TPC volume, but the interaction was not

a neutral current elastic neutrino-proton interaction. Figure 67 shows the remain-

ing NC TPC background after the NC elastic proton selection as a function of
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reconstructed Q2. The purple filled histogram includes all remaining NC TPC

background events, and the pale purple box represents the systematic uncertainty

on the number of events. The overlaid hatched histograms show which type of

track was selected as the proton candidate. In the NC TPC background events

the selected track was almost always a neutrino-induced proton track.
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Figure 67: Remaining NC TPC background events after NC elastic proton event

selection as a function of Q2.

The NC TPC background includes NC elastic neutrino-neutron interactions,

NC elastic interactions with a correlated neutron-proton pair in the nucleus, also

referred to as meson-exchange-current (MEC) interactions, and all other nonelas-

tic NC neutrino interactions. The NC elastic neutrino-neutron and NC MEC

interactions are the largest NC TPC backgrounds as shown in Fig. 68. The dark-

est purple histogram includes all NC elastic neutrino-neutron selected events, the
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medium purple histograms includes all NC MEC selected events, and the pale pur-

ple includes all other background events. The NC elastic neutrino-neutron cross

section is a difficult background because both of the final state particles in the

initial interaction, the neutrino and the neutron are neutral making them difficult

to detect in the TPC. The neutron can then scatter a single proton in the liquid

argon. These neutrino-neutron NC elastic events also depends on the strange

axial form factor, but in the opposite way from the NC elastic neutrino-proton

cross section. If there were exactly as many neutrino-neutron as neutron-proton

NC elastic events selected, the sensitivity to Gs
A would disappear.
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Figure 68: Remaining background NC TPC background events broken down by

interaction type after NC elastic proton event selection as a function of Q2.

The NC MEC events are difficult to distinguish from a signal event because

the final state particles are usually a neutrino, a neutron, and a proton, with
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the proton being the only easily detectable particle. NC MEC events have not

been very well studied because of very little data, and there is a large uncertainty

and variation between nuclear MEC models even in the charged current sector

where there are more experimental data. In the version of the GENIE Monte

Carlo neutrino generator that was used for this analysis, only one model for NC

MEC events is available referred to as the “empirical MEC model.” However, for

CC MEC interactions there are two models available: the empirical model and

the Valencia model [112, 113]. We can look at the difference between the two

CC MEC models in MicroBooNE simulation to estimate the correct scale and

uncertainty on the number of NC MEC events. Figure 69 shows the number of

CC MEC events in the MicroBooNE simulation as a function of true Q2 for each

of the two models scaled to 5 × 1019 POT. The two models were also simulated

with different nuclear and FSI models, which have a much smaller effect on the

number of events than the MEC model.

To cover the difference in the MEC models in this analysis, we multiply all

MEC events by a correction factor so that the total number is the average of

the two models, and apply an uncertainty so that the prediction of either model

is one standard deviation from the scaled number of events. This is shown in

Fig. 70 with the simulated events for the two models the same as in Fig. 69 and

the black points showing the scaled events with one standard deviation systematic

uncertainty bars. All MEC events above Q2 = 0.5 GeV2 are given a correction
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Figure 69: Comparison of the number of CC MEC events in MicroBooNE simu-

lation between the two models as a function of true Q2.

factor of one. The MEC correction factor and uncertainty is applied to both NC

and CC MEC events. The effect on the overall systematic uncertainty of the

NC elastic proton selection due to the MEC uncertainty is shown in Sec. 5.4.3.

Including the MEC event correction factor, the total number of remaining NC

TPC background events after the NC elastic proton event selection (scaled to

1.6× 1020 POT) is

NNC = 120± 13 (stat.)± 10 (syst.) . (96)

5.3.3 Cosmic Background

The cosmic background comes from both cosmic interactions that occur within

the 1.6 µs neutrino beam spill window triggering the event readout and from
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Figure 70: Corrected number of CC MEC events as a function of true Q2 with

one standard deviation systematic uncertainty bars.

cosmic interactions that occur within the 1.6 ms TPC readout window that was

triggered by a neutrino beam interaction. The latter is included in the previous

sections because they cosmic tracks are part of the neutrino triggered events.

The rate of cosmic interactions that trigger the readout, referred to as in-time

cosmic interactions, are determined from the off-beam data stream. The exact

same trigger logic is run in the on-beam and off-beam data streams, but with the

off-beam trigger being offset in time from the neutrino beam spill. This allows us

the determine the cosmic in-time background almost exactly. Figure 71 shows the

remaining off-beam events passing the NC elastic proton selection after scaling

to the correct number of triggers in the on-beam data set as shown in Sec. 5.2.5.

The pale gray box represents the statistical uncertainty on the number of events.
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The number of remaining cosmic in-time background events after the NC elastic

proton event selection (scaled to 1.6× 1020 POT) is Ncosmic = 340± 34.
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Figure 71: Remaining in-time cosmic background events after NC elastic proton

event selection as a function of Q2.

5.4 Estimation of Systematic Uncertainty

The estimation of the systematic uncertainty due to the neutrino beam flux, the

detector physics modeling, and the nuclear and cross section physics models are

described in this section. Since the measured neutrino beam data that passes the

selection are compared directly to the expectation from simulation and off-beam

data, the systematic uncertainty is estimated for and applied to the simulation

only, and the data are unaltered.
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5.4.1 Neutrino Beam Flux Uncertainty

The systematic uncertainties on the neutrino beam flux prediction at MicroBooNE

have been evaluated in detail in Ref. [8]. Figure 72 shows the calculated neutrino

flux with the associated uncertainty. The region of neutrino energy with the

largest uncertainty is also the region with a low elastic neutrino cross section.

Figure 73 shows the uncertainty on the number of simulated neutrino interactions

in 5× 1019 POT of MicroBooNE data due to the flux uncertainty as a function of

true neutrino energy. Figure 73a includes all simulated neutrino interactions and

Fig. 73b only includes simulated NC elastic neutrino-proton interactions.
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Figure 72: Neutrino flux prediction with systematic uncertainty at Micro-

BooNE [8].

Since we are interested in a specific range of negative four-momentum transfer

squared, it is useful to know the effect of the neutrino flux uncertainty as a function
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(a) All simulated neutrino interactions.
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(b) Simulated NC elastic neutrino-proton

interactions.

Figure 73: The uncertainty on the number of simulated events due to the neutrino

beam flux uncertainty as a function of Eν .

of Q2. Figure 74 shows the relationship between the true four-momentum transfer

squared and the true neutrino energy in simulated NC elastic neutrino-proton

interactions in MicroBooNE. The color scale represents the number of events in

arbitrary units with yellow being the highest and dark blue being the lowest.

The dashed white lines represent the Q2 range of interest in this analysis. The

interactions with the lowest neutrino energy and the highest fractional uncertainty

have a four-momentum transfer squared below the range of interest. Figure 75

shows the fractional uncertainty on the number of simulated NC elastic neutrino-

proton interactions due to the neutrino flux uncertainty as a function of true Q2.

The dashed blue line represents the lower end of the Q2 range of interest.

Figure 76 shows the uncertainty on the number of simulated neutrino interac-
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Figure 74: Two-dimensional histogram showing the relationship between true Q2

and true Eν in simulated NC elastic neutrino-proton interactions in MicroBooNE.

tions in 5×1019 POT of MicroBooNE data due to the flux uncertainty as a function

of true neutrino energy. Figure 76a includes all simulated neutrino interactions

and Fig. 76b only includes simulated NC elastic neutrino-proton interactions.

Figure 77 shows the NC elastic proton selection on simulation and off-beam

data with the statistical and systematic uncertainty due to the uncertainty on the

neutrino beam flux as a function of reconstructed Q2. In this figure, and all of the

similar figures in this section, the color filled histograms include simulated neutrino

data with true NC elastic proton events in peach and the gray filled histogram

includes off-beam data events, all scaled to the expected Run I 1.6× 1020 POT of
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Figure 75: Fractional uncertainty on the number of simulated NC elastic neutrino-

proton interactions due to the beam flux uncertainty as a function of Q2.

data. The inner error bar represents the statistical uncertainty on the number of

events, and the outer error bar represents the combined statistical and systematic

uncertainty due to the flux uncertainty.

5.4.2 Detector Physics Uncertainty

The uncertainty on the expected number of events due to mis-modeling of the

detector physics in the simulation is estimated by generating simulated events

with variations in the detector physics parameters. First, a set of events are

generated, propagated through the detector geometry, and reconstructed all with

the default MicroBooNE simulation parameters. Then, the same generated events

are propagated through the detector geometry with a given parameter varied by

one standard deviation of the estimated uncertainty on the parameter. This is

137



0.0 0.2 0.4 0.6 0.8 1.0
True Q2 [GeV2]

0

200

400

600

800

1000

1200

1400

1600

E
ve

nt
s 

in
 5

e1
9 

PO
T

(a) All simulated neutrino interactions.
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Figure 76: The uncertainty on the number of simulated events due to the neutrino

beam flux uncertainty as a function of Q2.

done for all detector physics parameters that are expected to have a large effect

on the final event selection. The events simulated with the default parameters

can be directly compared to the events simulated with the varied parameters to

determine the effect.

The detector physics effects that are expected to have the largest effect on the

NC elastic proton selection in simulation are the dynamic induced charge on the

wires, the space charge effect, and the single PE background rate, as described

below. Full MicroBooNE simulation samples were generated to test each of these

three effects.

In the default MicroBooNE simulation, charge induction is only simulated on

the wire closest to the drifting charge on each of the wire planes [114]. An esti-
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Figure 77: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the uncertainty on the neutrino beam

flux.

mated induced charged is added to the ten closest wires to the drifting charge in

a detector variation sample. The estimation is not a full 2D simulation of effect

of the drifting charge on the wires, which will be added to a later version of Mi-

croBooNE simulations. Figure 78 shows event displays of a simulated proton on

the second induction plane event using the default settings without the dynamic

induced charge estimation, Fig 78a, and with the dynamic induced charge esti-

mation in the alternative sample, Fig. 78b. At the bottom of both events display,

an individual wire signal is shown from one wire in the middle of the track. The

track was selected as an NC elastic proton in the default simulation, but not in

the alternative simulation.

Figure 79 shows the total number of selected events as a function of recon-
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(a) Using the default detector physics pa-

rameters.

(b) With the estimated dynamic induced

charge on the wires.

Figure 78: Comparison of an event display of the second induction plane using

the default detector physics parameters and using the estimated dynamic induced

charge on the wires.

structed Q2 in the default detector physics sample and the dynamic induced charge

estimation sample. The effect is much larger in the first bin (a 40% change) than

the higher Q2 bins (a 25% change). Figure 79a includes all simulated events pass-

ing the NC elastic proton selection, and Fig. 79b only includes simulated true NC

elastic proton events passing the NC elastic proton selection. The percent change

as a function of Q2 bin is similar between the two. To account for the difference
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due to not having a full dynamic induced charge simulation, a 40% uncertainty in

the negative direction is added to the first reconstructed Q2 bin, and 25% uncer-

tainty in the negative direction to each of the higher reconstructed Q2 bins. No

uncertainty in the positive direction is attributed to the dynamic induced charge

model because the default simulation includes no model at all, and adding induced

charge isn’t expected to increase the number of events selected.

0.0 0.2 0.4 0.6 0.8 1.0
Reconstructed Q2 [GeV2]

0

20

40

60

80

100

120

140

160

Se
le

ct
ed

 E
ve

nt
s

Default Simulation
Dynamic Induced Charge

(a) Including all simulated events.
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(b) Only NC elastic proton events.

Figure 79: Change in the number of simulated events passing the NC elastic

proton selection as a function of reconstructed Q2 between the default detector

physics and with the estimated dynamic induced charge on the wires.

Figure 80 shows the NC elastic proton selection on simulation and off-beam

data with the statistical and systematic uncertainty due to the dynamic induced

charge on the wires as a function of reconstructed Q2. The inner error bar rep-

resents the statistical uncertainty on the number of selected events and the outer

error bar represents the combined statistic and systematic uncertainty due to the
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induced charge.
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Figure 80: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the dynamic induced charge on the

wires.

The space charge effect is due to the build up of positive ions in areas of the

detector that lead to a distortion of the electric field. The effect in MicroBooNE

is described in detail in Ref. [115]. In the detector physics variation sample, a

data-driven correction is applied to the electric field distortion, which will be

included in future MicroBooNE simulations. Figure 81 shows the change in the

number of simulated events passing the NC elastic proton selection as a function

of reconstructed Q2 between the default detector physics sample and the space

charge correction sample. Figure 81a includes all passing simulated events, and

Fig. 81b only includes true NC elastic proton events. The change in the number

of selected events between the two samples is small.
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(a) Including all simulated events.
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(b) Only NC elastic proton events.

Figure 81: Change in the number of simulated events passing the NC elastic

proton selection as a function of reconstructed Q2 between the default detector

physics and with the space charge correction.

Another source of uncertainty in MicroBooNE is the rate of the single PE

optical background. The single PE background rate is a single PE rate with an

unknown source of about 250 kHz per PMT. To test the effect of the rate of the

single photoelectron background in the PMTs, a simulation sample was generated

which varies the single PE rate by ±20%. The flash produced by short single

proton tracks can be small and near the PE threshold for optical pre-selection.

Additionally, the NC elastic proton selection is dependent on the reconstructed

position of the beam flash which can be affected by the background PEs in the

PMTs, especially for smaller flashes. This is because the reconstructed position

of the flash is weighted by the number of PEs in each PMT, and the single PE

background is uniform in MicroBooNE. Figure 82 shows the change in the number
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of simulated events passing the NC elastic proton selection as a function of recon-

structed Q2 when the single PE background rate is varied by ±20%. Figure 82a

includes all passing simulated events, and Fig. 82b only includes true NC elastic

proton events. The small reduction in the number of selected events when the

single PE rate is decreased by 20% (dashed line) is mainly due to events with

flashes near the PE threshold being cut in the optical pre-selection. The large

reduction when the single PE rate is increased by 20% is mainly due to the dis-

tance between the center of the reconstructed flash and track increasing. Even
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(a) Including all simulated events.

0.0 0.2 0.4 0.6 0.8 1.0
Recosntructed Q2 [GeV2]

0

20

40

60

80

Se
le

ct
ed

 T
ru

e 
N

C
E

 P
ro

to
n 

E
ve

nt
s Default Simulation

+20% Single PE
 Background Rate

20% Single PE
 Background Rate

(b) Only NC elastic proton events.

Figure 82: Change in the number of simulated events passing the NC elastic

proton selection as a function of reconstructed Q2 when the single PE background

rate is varied.

though increasing and decreasing the single PE rate by 20% both have a nega-

tive effect on the number of events, it is due to different effects, and a smaller

variation could increase the number of selected events. To account for this we
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apply a symmetric uncertainty of 20% which is the percent change in the number

of selected events when the single PE rate was increased. Figure 83 shows the

NC elastic proton selection on simulation and off-beam data with the statistical

and systematic uncertainty due to the single PE background rate as a function

of reconstructed Q2. The inner error bar represents the statistical uncertainty on

the number of selected events and the outer error bar represents the combined

statistic and systematic uncertainty due to the single PE rate. Additional sources
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Figure 83: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the single PE background rate.

of disagreement between the optical simulation and the light detected in Micro-

BooNE are from Cerenkov radiation and a time-dependence of the light collection

efficiency. Both of these effects are known to occur in the detector, but are not

included in the MicroBooNE simulation.
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5.4.3 Model Uncertainty

There is systematic uncertainty on the number of simulated events passing the

NC elastic proton selection due to the nuclear models and the neutrino-nucleon

cross section models. The uncertainty on the cross section model is due to the

uncertainty on the electromagnetic and charged current axial form factors used in

the model. The uncertainty on the nuclear models is much larger and comes from

several different effects.

The estimate of the uncertainty due to the MEC model was discussed in

Sec. 5.3.2. The effect of this uncertainty on the NC elastic proton selection is

shown in Fig. 84 as a function of Q2. The color filled histograms include the

simulated neutrino events with NC elastic neutrino-proton events in peach, and

the gray filled histogram includes the off-beam data all scaled to the expected

selection in the 1.6 × 1020 POT Run I data. The inner error bars represent the

statistical uncertainty on the number of events, and the outer error bar represents

the combined statistical and systematic uncertainty due to the estimated uncer-

tainty on the MEC model. Although the uncertainty on the MEC model is large,

as shown in Fig. 70, the number of selected MEC events is small enough that the

effect on the overall selection uncertainty is small.

The GENIE version used in this analysis implements a relativistic Fermi gas

(RFG) nuclear momentum model [116]. The model assumes that all nucleon
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Figure 84: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the uncertainty on the MEC model.

momentum states up to the Fermi momentum, kF , are equally likely. Neutrino-

nucleon interactions are only allowed if the outgoing nucleon momentum is greater

than kF . This effect is referred to as Pauli blocking (or Pauli suppression). In

the GENIE Reweighting tool, the uncertainty in the amount of Pauli blocking

is accounted for by varying the Fermi momentum by ±35% [96]. However, this

is only implemented in the GENIE Reweighting tool for charged current quasi-

elastic (CCQE) interactions. Since Pauli blocking is a nuclear effect, we assume

that the uncertainty due to Pauli blocking as a function of true Q2 is the same

for NC elastic and CCQE interactions in argon and apply the uncertainty found

for CCQE interactions to NC elastic interactions, as well. Figure 85 shows the

uncertainty due to Pauli blocking on CCQE interactions as a function of true Q2

for an arbitrary number of simulated interactions. The solid line shows the number
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of simulated CCQE interactions using the default values of kF = 0.242 GeV for

protons and kF = 0.259 GeV for neutrons, the upper dashed line shows the number

of simulated CCQE interactions using (1 − 0.35) · kF , and the lower dashed line

shows the number of simulated CCQE interactions using (1 + 0.35) · kF (a higher

value of kF corresponds to greater suppression). The effect is largest at true Q2

values less than 0.1 GeV2.
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Figure 85: The systematic uncertainty due to Pauli blocking on simulated CCQE

events as a function of true Q2 using the GENIE Reweighting tool.

Figure 86 shows the effect on the simulated NC elastic proton event selection

as a function of reconstructed Q2 due to applying the Pauli blocking uncertainty

to NC elastic and CCQE events. The inner error bar represents the statistical un-

certainty on the number of events, and the outer error bar represents the combined

statistical and systematic uncertainty due to Pauli blocking.
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Figure 86: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to Pauli blocking.

The GENIE Reweighting package also includes tools to determine the uncer-

tainty on the simulation due to the probability of the nucleon re-interacting in

the nucleus. This is done for by varying the mean free path of the nucleon, Nmfp,

in the argon nucleus which is proportional to the total rescattering probability.

Figure 87 shows the systematic uncertainty on the number of simulated events due

to varying Nmfp by ±20% for all events using the GENIE Reweighting tool. The

inner error bars represent the statistical uncertainty on the number of selected

events, and the outer error bars represent the combined statistical and systematic

uncertainty due to the FSI probability.

To determine the uncertainty due to the choice of the nuclear model itself,

simulation samples were generated with alternative nuclear momentum and FSI

models. The nuclear momentum model is changed from the default RFG model to
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Figure 87: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the nucleon rescattering probability

in the argon nucleus.

a local Fermi gas (LFG) model [117]. The FSI model changed from the hA GENIE

model to the hA2014 GENIE model [97]. The NC elastic neutrino-nucleon cross

section is unchanged in the alternative simulation sample, so the effect of changing

the Fermi gas and FSI models was tested in NC elastic interactions. Figure 88

shows the change in the number of simulated NC elastic events in 5×1019 POT of

data for the two different simulation sets as a function of reconstructed Q2. The

blue lines show the events simulated with the RFG nuclear momentum model

and the hA FSI model, and the orange lines show the events simulated with the

LFG nuclear momentum model and the hA2014 FSI model. The corresponding

colored boxes show the statistical uncertainty on the number of events. Figure 88a

only includes the NC elastic proton events, and Fig. 88b includes the NC elastic
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neutron events. For both interaction types, the change in the number of events

between models is within statistical uncertainty. The overall change in the number

of events in the NC elastic proton selection is about 1%.
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(a) NC elastic neutrino-proton events.
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(b) NC elastic neutrino-neutron events.

Figure 88: The change in the number of NC elastic events with different nuclear

momentum and FSI models as a function of reconstructed Q2.

The estimation of the uncertainty on the number of dirt interactions in Micro-

BooNE was described in Sec. 5.3.1. Figure 89 shows the systematic uncertainty

on the simulated NC elastic proton selection due to the dirt uncertainty. The

inner error bars represent the statistical uncertainty on the number of events, and

the outer error bars represent the combined statistical and systematic uncertainty

due to the number of dirt events.

The uncertainty on the NC elastic proton selection due to the electric, mag-

netic, and charged current axial form factor z expansion models was found to be

small. The uncertainty on the models were taken directly from the Refs. [82, 77]
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Figure 89: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty due to the number of dirt interactions.

and extrapolated to the NC elastic proton selection. The total uncertainty on the

selection due to the form factor models was found to be 0.5%.

Table 4 shows the contribution from each of the systematic effects to the overall

uncertainty on the number of expected events in the NC elastic proton selection.

If an asymmetric systematic uncertainty is applied, the larger of the two is shown

in the table.

Figure 90 shows the total combined systematic uncertainty on the simulated

NC elastic proton selection from all of the effects described in this section. The

inner error bars represent the statistical uncertainty on the number of events, and

the outer error bars represent the combined statistical and systematic uncertainty.
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Table 4: Contributions to the systematic uncertainty on the number of simulated

events passing the NC elastic proton selection.

Source Uncertainty %

Neutrino Beam Flux 9.8

Dynamic Induced Charged 27.5

Space Charge 5.0

Single PE Rate 20.0

MEC Model 5.9

Pauli Blocking 4.9

Fermi Gas and FSI Models 1.0

FSI Interaction Probability 5.5

Dirt Events 3.2

Form Factor Model 1.7

6 Analysis

This section describes the analysis tools used to extract the strange axial form

factor parameters from the number of events in data and simulation that pass

the NC elastic proton selection. First, the method for determining the expected

number of events in data given different model and systematic parameter values

is discussed. Next, the formula for calculating the likelihood of the observed data
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Figure 90: The NC elastic proton selection on simulation and off-beam data with

statistical and systematic uncertainty.

given a set of parameter values, and the technique used to sample the probability

distribution of the parameters is described. Last, the results of the measured

probability distributions of the strange axial form factor parameters are shown.

6.1 Comparison of Data to Simulation

To determine what underlying true physics values cause the data that we measure,

we compare the data to Monte Carlo simulation. The physics model of the data

is a combination of many different models including nuclear physics models, neu-

trino cross section models, nucleon structure models, cosmic ray models, which

would be very complicated to calculate directly. Instead, we simulate the data

we expect to see in the detector given a set of physical parameters and models
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and compare that directly to the actual data we measured. We do this for many

possible values of the parameters and calculate the likelihood for each set of pa-

rameter values. In addition to varying the parameters that we want to measure

in the simulation, we vary the physical parameters whose true values aren’t well

constrained which might have a large effect on the final data. This allows us to

quantify the uncertainty due to the unknown quantities.

6.1.1 Event Reweighting

Full Monte Carlo simulations are both time and compute intensive. Instead of

re-running the simulation for each possible parameter value that we are interested

in, we can calculate the ratio of the probabilities of each interaction occurring

given the new parameter values to the probabilities of each interaction occurring

for the original simulated parameter values. We refer to this ratio as an event

weight:

w =
P (event|θ′)
P (event|θ)

, (97)

where w is the event weight for a given event, P (event|θ) is the probability of

the simulated event given the set of original parameters used in the simulation,

θ, and P (event|θ′) is the probability of the simulated event given a new set of

parameters, θ′.

The four contributions to the GENIE cross section model (the nuclear physics

model, the neutrino-nucleon cross section model, the hadron production model,
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and the intranuclear hadron transport model from Sec. 4.1.1) are treated inde-

pendently in NC elastic events [95]. This allows us to factor the event weight,

w = wnuclear × wneutrino-nucleon × whadron prod. × wintranuclear , (98)

where wnuclear is the nuclear physics model weight, wneutrino-nucleon is the neutrino-

nucleon cross section model weight, whadron prod. is the hadron production model

weight, and wintranuclear is the intranuclear hadron transport model weight. Only

the NC elastic cross section probability ratio needs to be calculated to see the

effect of ∆s or another cross section parameter of interest on reconstructed Q2 of

selected events.

The probability of a neutrino interaction is proportional to the interaction

cross section, so the weight, wneutrino-nucleon is simply a ratio of the cross sections

wneutrino-nucleon = wσ =
dnσ′ν/dK

n

dnσν/dKn
, (99)

where dnσ/dKn is the differential cross section for the initially simulated neutrino-

nucleon interaction, and dnσ′/dKn is the differential cross section with the modi-

fied parameters evaluated at the kinematical phase space {Kn}3. The differential

cross section is a function of the neutrino energy in the rest frame of the scattered

nucleon, E
(NRF )
ν , the interaction four-momentum transfer, Q2, and the physics

model, including the model parameters.

To determine the effect of the strange axial form factor parameters ∆s and

M s
A (or as0, as1, and as2) on the data, we calculate the NC elastic cross section given
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these new parameters and the cross section given the initial simulation parameters

for each NC elastic event in the Monte Carlo simulation. To get an accurate

weight, the denominator needs to be calculated exactly as the cross section was

calculated in the initial GENIE simulation. However, there is no reason that a

different model can’t be used for the numerator. For the numerator in elastic

interactions, we use the Llewellyn-Smith neutrino-nucleon elastic cross section

parameterization described in Sec. 2.5 with the z expansion vector and strange

axial form factors described in Sec. 2.6.1.

To determine the effect of a set of NC elastic cross section parameters given

our parameterization, we calculate the neutrino-nucleon weight for each NC elastic

event

wσ =

(
dσ
dQ2 (as0, a

s
1, a

s
2)
)

L.S.(
dσ
dQ2

)
GENIE

, (100)

where the L.S. subscript represents the cross section calculated using the Llewellyn-

Smith parameterization with the z expansion form factors, and the GENIE sub-

script represents the default cross section in the simulation.

We also calculate weights to determine the effect on the simulated data of each

of the sources of systematic uncertainty described in Sec. 5.4. We can sample the

probability space of each of these “nuisance” parameters and calculate a weight

based on that value. If the nuisance parameters are independent of each other,

multiplying the nuisance parameter weights together is equivalent to sampling the
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combined, N -dimensional probability space of the systematic parameters, whereN

is the number of parameters. Sampling each of the relevant systematic parameters

from Sec. 5.4 gives

wsyst = wflux × wD.I.C. × wS.P.E. × wMEC × wP.B. × wdirt . (101)

Combining Eqns. 98, 100, and 101 gives an event weight which combines the

effect due to a sample from the model parameter distribution and the values of

the strange axial form factor parameters that we want to measure

w = wσ × wsyst . (102)

6.1.2 Likelihood calculation

To compare the simulation and the weight calculations directly to the data, we

sum the weights for each reconstructed Q2 bin in the distribution of events passing

the NC elastic proton selection

NNCE(Q2
i ) =

∑
j∈NCi

wj , (103)

where i is the Q2 bin, NCi is the set of events selected as NC elastic neutrino-

proton events in the ith Q2 bin, and w = wj is the calculated weight of the event. If

the event is not a true simulated elastic event, then wσ = 1 giving wj = wsyst. At

this point, the Monte Carlo simulated data is directly comparable to the detector

data.
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To evaluate how well the model represents the data, we calculate the probabil-

ity of the observed data given a model and set of parameters. This probability is

called the likelihood. We assume that the measured data is normally distributed,

and the likelihood is

L = P (Dobs|θ) =
∏
i∈IQ2

P (Dobs
i |θ) =

1√
2πσ2

i

e−
1
2

(Dobs
i −D

exp
i (θ))2/σ2

i , (104)

where Dobs is the measured NC elastic neutrino-proton event selection distribution

in data, IQ2 is the set of Q2 bins, Dobs
i is the measured number of selected events

of that bin, and σi is the statistical uncertainty of the difference between the

observed and expected events in the measured bin value. The expected value of

the event selection distribution, Dexp
i (θ), is a function of the model and the set

of model parameters, θ. It is equal to NNCE(Q2
i ) in Eqn. 103. The set of model

parameters, θ, contains the systematic model parameters described in Sec. 5.4 and

the strange axial form factor parameters, as0, as1, and as2 described in Sec. 2.6.3. In

this analysis, only the statistical uncertainty is contained in σi, and the systematic

uncertainty is handled by sampling the systematic parameter values contained in

θ as described in Sec. 6.2.2.

When computing and comparing the likelihood values, the natural log of the

likelihood (log-likelihood) is actually used to avoid rounding errors in the compu-

tation. Taking the log of Eq. 104 gives

logL = −Nbins

2
log(2π)

∑
i∈IQ2

[
log(σi)

1

2
(Dobs

i −D
exp
i (θ))2/σ2

i

]
(105)
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The likelihood calculation depends on nine different parameters, the three

parameters of the strange axial form factor and the six systematic parameters de-

scribed in Sec. 5.4. Calculating likelihood distributions for nine parameters would

be computationally very time consuming. Figure 91 shows the likelihood distri-

butions calculated on a grid over the three strange axial form factor parameters,

as0, as1, and as2, while setting all of the systematic uncertainties to zero. Fig-

ures 91a and 91b show the grids of likelihood values for as0 and as1 with as2 held at

−20 and 10, respectively. Figures 91c and 91d show the grids of likelihood values

for as0 and as2 with as1 held to −3 and 2, respectively. Figures 91e and 91f show the

grids of likelihood values for as1 and as2 with as0 held to 0 and 1, respectively. Even

ignoring the systematic parameters and just varying three parameters is compu-

tationally difficult and can only be done for discrete values of the parameters.

The sampling method described in Sec. 6.2.2 makes calculating the distributions

in larger dimensions achievable.
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(c) With parameter as1 = −3.
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(d) With as1 = 2.
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(e) With parameter as0 = 0.
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(f) With as0 = 1.

Figure 91: Calculated likelihood values at discrete as0, as1, and as2 with zero sys-

tematic uncertainty.
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6.2 Strange axial form factor parameter estimation

The likelihood gives the probability of the observed data given a model and a set

of parameters. What we are really interested in is the probability of the param-

eters a2
0, as1, and as2 given the observed data and our model. We can determine

this probability distribution using Bayesian inference and probability sampling

methods.

6.2.1 Bayesian inference

Bayes’ theorem is used to convert between the likelihood and the probability of

the model given the data

P (θ|Dobs) =
P (Dobs|θ)P (θ)

P (Dobs)
. (106)

The likelihood, P (Dobs|θ), was described in detail in Sec. 6.1.2 and is defined in

Eqn. 104. The other three factors in Bayes’ theorem deserve some explanation.

First, the probability of θ given the observed data, P (θ|Dobs), is the probability

distribution that we ultimately want to determine. It is referred to as the posterior

distribution. Implicit in the notation is the model. If we wanted to write it

explicitly, it would be:

P (θ|Dobs) ≡ P (θ|Dobs,M) , (107)

where M represents the physics model. The parameter set θ is still the set con-

taining the strange axial form factor parameters, and the systematic parameters
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from Sec. 6.1.1.

Next, the probability of the parameters, P (θ), is referred to as the prior dis-

tribution. It is also implicitly conditional on the model, M. This is where we

include prior information that we know to be true. It is impossible not to include

some prior information in inference. For example, using a uniform prior on ∆s is

the same as saying that ∆s has the same probability of being zero as it does of

being infinite. The prior should be used to exclude unphysical parameter values,

like negative mass. In a good model with adequate data the posterior distribution

should be robust to the choice of a prior. It is always necessary to evaluate the

effect of the choice of priors on the posterior. In Sec. 6.3 we show the effect of

different priors, including a uniform prior, on the posterior distribution.

Last, the marginal probability of the observed data P (Dobs) is integrated over

all θ values. It too is implicitly conditional onM and is referred to as the evidence

of the model. Explicitly, it can be written as

P (Robs) ≡ P (Dobs|M) =

∫
θ

P (Dobs|θ)P (θ|M)dθ . (108)

6.2.2 Markov Chain Monte Carlo

There is no way to calculate an exact solution to our posterior distribution analyt-

ically, but it can be estimated numerically by sampling. Most sampling techniques

would be computationally impossible due to the fact that our posterior distribu-

tion is nine-dimensional (aa0, as1, as2, and the six systematic nuisance parameters),
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and each likelihood calculation requires thousands of event weights to be calcu-

lated. Markov chain Monte Carlo (MCMC) is a class of methods for sampling

multi-dimensional posterior distributions. Two of the most common MCMC al-

gorithms are the Metropolis algorithm [118] and Gibbs sampling [119]. Both are

used in this analysis.

The Metropolis algorithm is a random walk in the N -dimensional parameter

space with a rule to either accept or reject each step in the walk. Each proposed

step is drawn from a proposal distribution. In this analysis, we use a multivariate

normal proposal distribution centered at the current position. The step is accepted

if the value of the posterior distribution at the proposed position is greater than

at the current position. If the value at the proposed distribution is smaller than

the current value, the proposed step is accepted with a probability equal to the

ratio of the value at the proposed position to the value at the current position.

The decision to accept or reject a proposed step can be determined entirely by

calculating the ratio of the posterior values at the proposed and current positions.

Since the evidence, P (Dobs), doesn’t depend on θ, it never needs to be calculated.

At every proposed step only the likelihood, P (Dobs|θ), and the prior, P (θ), need

to be calculated.

Gibbs sampling as used in this analysis is also a random walk in the N -

dimensional parameter space, but it samples the posterior directly. We cannot

sample the posterior directly for the strange axial form factor parameters that
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we want to infer from the data, but we can make an approximation that allows

us to use Gibbs sampling for our nuisance parameters. At each Gibbs sampling

iteration, subvectors of parameters, θi ∈ θ, are cycled through and sampled condi-

tionally on the position of the previous subvector P (θti |θt−1
−i , D

obs), where t is the

current iteration, θt−1
−i represents the current position all of the other subvectors

(excluding θi), θ
t−1
−i = (θt0, ..., θ

t
i−1, θ

t−1
i+1 , ..., θ

t−1
d ), and d is the number of subvectors

in θ. Since the posterior is being sampled directly, the sample is also conditional

on the data, Dobs. This is where the approximation comes in. If we assume that

the nuisance parameters are independent of the data, then

P (θi|θ−i, Dobs) ≈ P (θi|θ−i) . (109)

The assumption being made here is that these parameter distributions, the posi-

tion and variance of the systematic nuisance parameters, would not change very

much based on the data we are comparing to, Dobs. In other words we would not

be able to tell from the observed data events passing the NC elastic proton selec-

tion what the true mean and variance of the systematic nuisance parameters are.

For example, we don’t believe that we can measure the single PE background rate

and its uncertainty by looking at the NC elastic event selection in the data. If that

assumption is true, then the posterior distributions of the systematic parameters

are equal to the prior distributions, which were estimated in Sec. 5.4.

The Metropolis and Gibbs sampling methods are combined for the parameter
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estimation. First, a Metropolis step is proposed for new as0, as1 and as2 values. The

likelihood value at the proposed position is evaluated conditionally on the current

position of the systematic nuisance parameters. Then, a Gibbs step is taken in all

of the systematic parameters at once (θi is all of the nuisance parameters), and

the likelihood is evaluated conditionally on the current position of as0, as1, and as2.

The proposed positions of each of the six parameters in the step are independent

of each other and of the current parameter values. This is repeated iteratively

until the target distribution has been reached. Metrics for determining how many

samples are required are discussed in Sec. 6.3.2.

6.3 Results

Using the reweighting method, the likelihood calculation, and the Metropolis and

Gibbs MCMC sampling, the strange axial form factor parameters can now be

estimated. First, the tools are tested by sampling the strange axial form factor

parameter posterior distributions without including the systematic nuisance pa-

rameters. Then, the systematic parameters are included, the convergence of the

MCMC sampling is evaluated, and the posterior distributions in terms of ∆s and

M s
A are shown.
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6.3.1 MCMC Sampling without Systematic Nuisance Parameters

The three strange axial form factor parameters are sampled first assuming no

systematic uncertainty. The main reason for doing this is to see if we get something

reasonable as a proof of concept. The extracted parameters don’t inform us about

the true strange axial form factor when the systematic uncertainty isn’t accounted

for.

To sample without the systematic uncertainty, the proposal distribution for

each systematic nuisance parameter is set to zero. The proposal distribution for

the strange axial form factors, described below, was determined empirically to

maximize the coverage of the allowed parameter space. The final proposal distri-

bution used for the strange axial form factor parameters is a multivariate normal

distribution with a small amount of covariance between each of the parameters.

The covariance is included because of the strong anti-correlation in the parameter

likelihood distributions in Sec. 6.1.2. If the covariance were not included, the fi-

nal sampled distributions would eventually be the same, but it would take longer

the to cover the parameter space. The metric used to determine the sampling

performance is the acceptance rate. If the proposed step is too large, most moves

will be rejected (a low acceptance rate), and it will take a long time to cover the

parameter space. If the proposed stop is too small, most moves will be accepted

(a high acceptance rate), and it will take a long time to cover more than just a
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small portion of the parameter space [120].

The proposal distribution used for the strange axial form factor parameters as

each MCMC iteration is a multivariate normal centered at the current position of

the MCMC chain at that iteration with covariance:

Σ =

0.075 −0.1 −0.2
−0.1 1.5 −2.0
−0.2 −2.0 30

 , (110)

which gives a acceptance rate when ignoring systematic parameters of 0.55. Fig-

ure 92 shows the covariance between the three parameters in the proposal dis-

tribution. The initial position of the MCMC chain is sampled from the proposal

distribution centered at the zero for each of the parameters.

The prior distributions on the strange axial form factor parameters are used

to encode bounds on the coefficients ask for k = 0, . . . , 6 introduced in Sec. 2.6.3.

Following the z expansion form factor analyses in Refs. [80, 74], we enforce |ask| ≤

10. Recall that as3, . . . , a
s
6 are linear combinations of as0, as1, and as2, making the

coefficient bounds:

|as0| ≤ 10 , |as1| ≤ 10 , |as2| ≤ 10 , (111)

| − 20as0 − 10as1 − 4as2| ≤ 10 , (112)

|45as0 + 20as1 + 6as2| ≤ 10 , (113)

| − 36as0 − 15as1 − 4as2| ≤ 10 , (114)

|10as0 + 4as1 + as2| ≤ 10 . (115)
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Figure 92: Two-dimensional views of the multivariate normal proposal distribu-

tion of the strange axial form factor parameters.

The optimal value of t0 from Eq. 84 is used for the mapping of Q2 to z(Q2),

toptimal
0 (Q2) = tcut

(
1−

√
1 +Q2

max/tcut

)
= 9m2

π

(
1−

√
1 + 1.0 GeV2/(9m2

π)
)

= −0.28 GeV .

(116)

Figures 93-96 show the results of 50,000 MCMC steps in as0, as1, and as2 with

the systematic parameters held at zero. Figure 93 shows the chains of MCMC

samples for as0, as1, and as2. Figure 94 shows the 50,000 samples of the posterior

distributions for each of the two-parameter pairs of the strange axial form factor
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parameters. The correlation between the as0 and as1 posterior distributions and

the correlation between the as1 and as2 posterior distributions are similar to the

correlations in the corresponding likelihood distributions even after introducing

the coefficient bounds and allowing all three parameters to vary simultaneously.

The calculated Pearson correlation coefficient between as0 and as1 is r01 = −0.77,

and the coefficient between as1 and as2 is r12 = −0.93. There doesn’t appear to be a

negative correlation between the as0 and as2 posterior distributions, however, even

though one exists between the likelihood distributions. In fact, the correlation

coefficient between as0 and as2 is positive, r02 = 0.51.
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Figure 93: MCMC chains of the strange axial form factor parameters after 50,000

steps with the systematic parameters held to zero.
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Figure 94: Two-dimensional views of the 50,000 MCMC samples of the poste-

rior distributions of the strange axial form factor parameters with the systematic

parameters held to zero.

6.3.2 MCMC Sampling with Systematic Nuisance Parameters

The prior distributions of the systematic nuisance parameters are described in

Sec. 5.4. Since we don’t expect the NC elastic proton selection in data to increase

our knowledge of the mean and variance of the systematic parameters significantly,

the posterior distributions of the systematic parameters should look similar to the

prior distributions. The best proposal distributions of the parameters are therefore
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their prior distributions since they are our best estimate of their posteriors which

we are not actually trying to measure.

To account for the systematic uncertainty from the sources described in Sec. 5.4,

we sample directly from the distributions described in that section in the Gibbs

sampling step. For each of the systematic proposals, we sample a standard Gaus-

sian with a mean of zero and a variance of one and translate the sampled value

to the effect of that parameter on the number of simulated events passing the NC

elastic proton selection. In the case of the dynamic induced charge the negative of

the absolute value is used because the uncertainty is only in one direction. Each

simulated event passing the NC elastic proton selection is multiplied by a weight

equal to the sampled parameter value times the effect of the parameter on the

event for each parameter. These weights are samples from the uncertainty distri-

butions that were described for each systematic parameter in Sec. 5.4. We assume

there is no correlation between the parameters and that there is a correlation of

one between bins for a given parameter. For the single PE background rate the

effect is the same for every event, and the weight is

wS.P.E = 1 + 0.2 · rS.P.E , (117)

where rS.P.E. is the randomly sampled single PE value, and the factor of 0.2 is the

20% uncertainty on the number of simulated events passing the NC elastic proton

selection due to the uncertainty on the single PE rate. The effect of the dirt
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normalization uncertainty is the same for all dirt events and zero for all non-dirt

events,

wdirt =

{
1 non-dirt events

1 + 0.5 · rdirt dirt events
, (118)

where rdirt is the randomly sampled dirt parameter value, and the factor of 0.5 is

the 50% uncertainty on the normalization of the simulated dirt events. The effect

of the dynamic induced charge is applied to all simulated events and depending

on the reconstructed Q2 value of the event,

wD.I.C. =

{
1− 0.4 · |rD.I.C.| Q2

reco < 0.175 GeV2

1− 0.25 · |rD.I.C.| Q2
reco ≥ 0.175 GeV2

, (119)

where rD.I.C. is the randomly sampled induced charged parameter value, and the

factors of 0.4 and 0.25 are the 40% uncertainty on the lowest reconstructed Q2

simulated events and the 25% uncertainty on all other simulated events, respec-

tively. The effect of the neutrino flux uncertainty is applied to all simulated events

depending on the true neutrino energy of the event as shown in Fig. 72

wflux = 1 + fflux(Eν) · rflux , (120)

where fflux(Eν) is the fractional uncertainty on the simulated flux for the given

true neutrino energy, and rflux is the randomly sampled flux parameter value.

The MEC uncertainty weight is applied only to simulated true MEC events and

is dependent on the true Q2 value of the event as shown in Fig. 70,

wMEC =

{
1 non-MEC events

1 + fMEC(Q2
true) · rMEC MEC events

, (121)
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where fMEC(Q2
true) is the fractional uncertainty on the number of simulated MEC

events for the given true Q2, and rMEC is the randomly sampled MEC param-

eter value. Finally, the Pauli blocking uncertainty weight is applied only to all

simulated events depending on the true Q2 value of the event as shown in Fig 85,

wP.B. = 1 + fP.B.(Q
2
true) · rP.B. , (122)

where fP.B.(Q
2
true) is the fractional uncertainty on the simulated events for the

given true Q2, and rP.B. is the randomly sampled Pauli blocking parameter value.

The asymmetry in the uncertainty is ignored to make it easier to evaluate the prob-

ability distribution. This is expected to be inconsequential because the asymmetry

is small, the overall uncertainty is small relative to the other sources of uncertainty,

and the larger of the negative or positive uncertainties is used at each true Q2 bin

which is the conservative choice.

The strange axial form factor parameters are treated the same as when the

systematic parameters were held to zero. The proposal distribution is the same

multivariate normal in Eq. 110 centered at the current position, and the prior

distributions are the same in Eq. 111 used to enforce the coefficient bounds.

Figures 95-96 show the results of 200,000 MCMC steps in as0, as1, and as2 with

the systematic parameters included. Figure 95 shows the chains of MCMC sam-

ples for as0, as1, and as2. Figure 96 shows the 200,000 samples of the posterior

distributions for each of the two-parameter pairs of the strange axial form factor
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Figure 95: MCMC chains of the strange axial form factor parameters after 200,000

steps with the systematic parameters included.

parameters. The correlations between the parameters are similar to the case with

no systematic uncertainty, but with larger variance. The correlations between the

parameters are similar to the correlations when the systematic parameters are not

included. The Pearson correlation coefficient between a0s and as1 is r01 = −0.84,

the coefficient between as1 and as2 is r12 = −0.80, and the coefficient between as0

and as2 is again positive at r02 = 0.36.

A bimodal shape in the as0 and as1 posterior distributions is slightly visible

in Figs. 95 and 96 and becomes much more apparent when we look at the two-

dimensional histogram of the samples in as1 and as0 shown in Fig. 97. Figure 98
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Figure 96: Two-dimensional views of the 200,000 MCMC samples of the poste-

rior distributions of the strange axial form factor parameters with the systematic

parameters included.

shows the one-dimensional histograms of the samples of as0, as1, and as2. The

bimodal nature of the as0 posterior distribution is very obvious in one dimension

with one clear mode at as0 = −0.1 and another at as0 = 1.3. The as1 posterior

distribution also shows a slight bimodal shape in one dimension, but it is not

nearly as pronounced as in as0.

Figure 99 shows the posterior predictive distribution of the number of expected

176



8 6 4 2 0 2 4
as

1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

as 0

Figure 97: Two-dimension histogram of the MCMC samples of the posterior dis-

tribution for the as0 and as1 parameters.

events passing the NC elastic proton selection in Run I. The posterior predictive

distribution is a prediction of what the data would look like based on the posterior

distribution of the parameters. It is used to check how well the model fits the data.

If the posterior predictive distribution is very different than the observed data, it

shows that the model is unable to fit the data. In Fig. 99, the blue distributions

at each value of reconstructed Q2 are the posterior predictive distributions, and

the black points are the observed neutrino-beam data events in Run I that pass

the NC elastic proton selection and the corresponding statistical uncertainty.

To understand the different as0 and as1 modes better, the posterior was divided

into two samples: one with as0 sample values less than 0.5 and one with as0 sample

values greater than 0.5. The posterior predictive distributions were determined
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Figure 98: One-dimensional histograms of the strange axial form factor parameter

samples.

for each sample and the median of each sample is plotted in Fig. 99 in red and

yellow. Mode 1, in red, is the sample with as0 sample values less than 0.5, and

Mode 2, in yellow, is the sample with as0 values greater than 0.5. The results are

what would be expected. The Mode 1 sample, with low as0 values and high as1

corresponds to a larger number of selected events at low Q2 and a steeper slope in

that region. The strange axial form factor contributes negatively to the NC elastic

neutrino-proton cross section, as shown in Sec. 2.4, so a large negative value for

the as0 term in the z expansion corresponds to a larger cross section at low Q2.

The Mode 2 sample, with more positive values of as0, corresponds to a smaller

number of selected events at low Q2 and a shallower slope in that region. It isn’t

clear from the posterior predictive distribution why there are two distinct modes,

however.
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Figure 99: The posterior predictive distribution of the number of selected events

compared to Run I neutrino-beam data as a function of reconstructed Q2.

6.3.3 MCMC Test Metrics

There is no perfect test of whether an MCMC chain has sampled to entire target

distribution [120], but there are some metrics to check to avoid common problems.

The obvious problems to check for are whether the step size is too small and the

MCMC chain is simply performing a random walk, whether the step size is too

large and the MCMC chain isn’t moving, whether the MCMC chain is stuck in a

local maximum, called pseudo-convergence, or if the MCMC chain simply hasn’t

taken enough samples.

To test whether the step size in the proposal distribution is too large or small,

the simplest and most effective metrics are the acceptance rate and plotting the
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trace of the MCMC chain itself. As discussed briefly in Sec. 6.3.1, if the acceptance

rate is close to one, the MCMC chain is performing a random walk, and if the

acceptance rate is close to zero, the MCMC chain is stationary. It has been shown

that the ideal acceptance rate for efficient Metropolis MCMC sampling with one

parameter is 0.5 decreasing to 0.23 for many parameters [121]. The acceptance

rate of the MCMC sampling chain was consistently 0.55, which is slightly higher

that the theoretical ideal, but still far from one and zero. The trace of the MCMC

chains are shown in Fig. 95. The chains do not look to be taking random walks

and do not have large changes over time.

Another straight-forward test is to change the prior and proposal distributions

and check that the posterior distribution is as expected. The MCMC sampling

was run for 50,000 iterations without any priors on the strange axial form factor

parameters and compared to the results with the priors. Recall that the priors

on the strange axial form factor parameters are used to enforce the coefficient

bounds described in Sec. 6.3.1 and are otherwise uniform. The mean values of the

samples of the as0, as1, as2 did not change significantly when the coefficient bounds

were removed. In fact, the mean values of each parameter were within a standard

deviation of the mean values when the coefficient bounds were enforced. However,

the variance of the samples greatly increased. To test the validity of the proposal

distribution the MCMC was run for 50,000 iterations with a proposal distribution

with twice the variance on each parameter half of the correlation between each
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pair of parameters. The means and variances of the MCMC samples did not

change. These simple checks show that the sampling is fairly robust to the choice

of prior and proposal distributions.

The Gelman-Rubin test [122] compares the variance between separate MCMC

chains to the variance within an MCMC chain to test the potential reduction in

variance if the chain were to be run longer. The R̂ value is the measure of the

potential scale reduction, and an ideal value is close to one. A result of R̂ < 1.1

is a sign that sampling variability is negligible [123]. Ten separate MCMC chains

were run for 10,000 iterations each to calculate R̂ for each strange axial form factor

parameter
R̂as0

= 1.02 ,

R̂as1
= 1.02 ,

R̂as2
= 1.01 .

(123)

These Gelman-Rubin test scores represent the potential scale reduction after

10,000 iterations. Since the MCMC sampling used for the final results here was

run for 200,000 iterations, we can be reasonably assured that the final posterior

distributions would not change drastically with further running.
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6.3.4 Distributions of ∆s and M s
A

To transform the strange axial form factor z expansion coefficients into ∆s, we

use the relationship derived in Sec. 2.6.3 between ∆s and the coefficients,

∆s = as0 + as1z0 + as2z
2
0 + as3z

3
0 + as4z

4
0 + as5z

5
0 + as6z

6
0 . (124)

Recall that the coefficients as3, . . . , a
s
6 are linear combinations of the first three co-

efficients as shown in Eq. 87. Additionally, the strange axial mass can be redefined

in terms of the slope of the strange axial form factor at Q2 = 0,

M s
A =

√
2
Gs
A(Q2 = 0)

Gs′
A(Q2 = 0)

=
√

2∆s/(as1 + 2as2z0 + 3as3z
2
0 + 4as4z

3
0 + 5as5z

4
0 + 6as6z

5
0) .

(125)

The dependence of M s
A on the square root of ∆s leads to an interesting looking

relationship in the posterior distribution between the two parameters. Figure 100

shows the two-dimensional histogram of the samples from the posterior distri-

bution in terms of M s
A and ∆s. There is a clear difference in the shape of the

distribution for ∆s above or below zero. When ∆s is positive, there is a positive

correlation between ∆s and M s
A, and when ∆s is negative, there is a negative

correlation between the two.

Figures 101 and 102 show the one-dimensional histograms of the samples

MCMC of the posterior distribution in terms of ∆s, in Fig. 101, and M s
A, in

Fig. 102. The one-dimensional distributions make it clear how large the variance

of the parameters is. The mode, and 68% and 95% credible intervals are shown for

182



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Ms

A [GeV]

3

2

1

0

1

2

3

4

5

s

Figure 100: Two-dimensional histogram of the MCMC samples transformed to

∆s and M s
A.

both parameters. The credible intervals used here are the highest posterior den-

sity intervals (HPDs). The HPD is defined as the narrowest interval that contains

the given percentage of the data.

For ∆s, the mode of the samples is at ∆s = −0.4 with a 95% credible interval

of −1.8 < ∆s < 3.8 and a 68% credible interval of −1.0 < ∆s < 2.6, as shown

in Fig. 101. For M s
A, the mode of the samples is at M s

A = 0.8 GeV with a

95% credible interval of 0 GeV < M s
A < 2.1 GeV and a 68% credible interval of

0.4 GeV < M s
A < 1.0 GeV.
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Figure 101: One-dimensional histogram of the MCMC samples transformed to ∆s

with 68% and 95% credible intervals.

6.4 Conclusions and Prospects for a Future MicroBooNE ∆s Mea-

surement

The measurement of the strange quark spin structure in the nucleon through

NC elastic neutrino-proton scattering remains an intriguing and important cross

check to measurements performed through deep inelastic scattering of polarized

charged-leptons and nucleons. MicroBooNE remains a good prospect for carrying

out this measurement because of its high resolution and neutrino energy range.

The machinery to identify protons in liquid argon TPCs and select NC elastic

events has been developed and is in a promising state. The limiting factor of

the measurement of ∆s in MicroBooNE is currently the understanding of the

detector physics that effect both the energy reconstruction of TPC objects and
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Figure 102: One-dimensional histogram of the MCMC samples transformed to

M s
A with 68% and 95% credible intervals.

the reconstruction of optical flashes in the PMTs.

The 68% credible interval around ∆s is larger than the previous two NC elastic

neutrino measurements of ∆s described in Sec. 1.3. If we ignore the second mode

in the ∆s posterior distribution, the 68% interval ranges from less than negative

one to greater than positive one. However, the potential to drastically reduce the

uncertainty on the ∆s measurement exists. Due to the fact that liquid argon TPCs

are such a new technology, the ability to identify protons, select low-Q2 events with

a reasonable efficiency, and understand the relationship between simulated events

in MicroBooNE and measured data events are all hindered by the understanding

of the detector physics.

The largest source of systematic uncertainty on the expected number of events
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is the dynamic induced charge, described in Sec. 5.4.2. A full, two-dimensional

simulation of the induced charge on each of the wire is currently being incorpo-

rated into the MicroBooNE simulation, which should have a huge effect on the

uncertainty in the simulation. The dynamic induced charge and other sources of

uncertainty on the reconstruction of TPC objects effect the use of calorimetry to

identify particles, as well. A lot of work has gone in to calibrating the energy

deposited in the detector and the charge collected on the wires, but the track

reconstruction needs to be precise enough to precisely determine the shape of the

energy deposited along the distance of the track. Improvements in our under-

standing of the TPC physics will lead to reduced systematic uncertainty on the

NC elastic proton selection, as well as a higher selection efficiency because we will

be able to make more precise cuts on reconstructed variables.

The next largest effect is due to the optical model. The uncertainty on the

simulation of the light in MicroBooNE effects several aspects of this analysis. As

discussed in Sec. 5.4.2, the rate of a single PE background shifts the center of

the reconstructed flashes causing an increase or reduction in the number of events

selected. Additionally, because the light is not well modeled in MicroBooNE, the

PE threshold for events to be reconstructed was raised to reduce the disagreement

between the measured data and the expectation from simulation. Since single,

low energy protons produce flashes near the threshold, this has a large effect on

the efficiency of the selection. Future iterations of MicroBooNE simulation will
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have improvements to the optical model including a treatment of Cerenkov light

production and the time dependence of the single PE rate leading to an increase

in the selection efficiency and reduction of systematic uncertainty.

The large variance in the posterior distribution of ∆s is mainly due to a dis-

agreement between the observed data and the expectation from simulation that

cannot be accounted for easily in the model. Once the detector model has im-

proved, a more precise measurement of ∆s will be achievable. Several improve-

ments are currently being made, and a better measurement should be possible in

the next iteration of MicroBooNE the simulation model.
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